NASA Reference Publication 1228

March 1990

Fastener Design Manual

Richard T. Barrett

(NASA-RP-1228) (NASA) 99 D FASTENER DESIGN MANUAL CSCL 13K

N90-18740

Unclas H1/37 0270347

NASA Reference Publication 1228

1990

Fastener Design Manual

Richard T. Barrett Lewis Research Center Cleveland, Ohio

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Division

Contents

Summary Introduction
Introduction
General Design Information
Fastener Materials
Platings and Coatings
Thread Lubricants
Corrosion
Locking Methods
Washers
Inserts
Threads
Fatigue-Resistant Bolts
Fastener Torque
Design Criteria
Rivets and Lockbolts
Rivets
Lockbolts
General Guidelines for Selecting Rivets and Lockbolts
References
Appendixes
A—Bolthead Marking and Design Data
B—Bolt Ultimate Shear and Tensile Strengths 90
C—Blind Rivet Requirements

Summary

This manual was written for design engineers to enable them to choose appropriate fasteners for their designs. Subject matter includes fastener material selection, platings, lubricants, corrosion, locking methods, washers, inserts, thread types and classes, fatigue loading, and fastener torque. A section on design criteria covers the derivation of torque formulas, loads on a fastener group, combining simultaneous shear and tension loads, pullout load for tapped holes, grip length, head styles, and fastener strengths. The second half of this manual presents general guidelines and selection criteria for rivets and lockbolts.

Introduction

To the casual observer the selection of bolts, nuts, and rivets for a design should be a simple task. In reality it is a difficult task, requiring careful consideration of temperature, corrosion, vibration, fatigue, initial preload, and many other factors.

The intent of this manual is to present enough data on bolt and rivet materials, finishes, torques, and thread lubricants to enable a designer to make a sensible selection for a particular design. Locknuts, washers, locking methods, inserts, rivets, and tapped holes are also covered.

General Design Information

Fastener Materials

Bolts can be made from many materials, but most bolts are made of carbon steel, alloy steel, or stainless steel. Stainless steels include both iron- and nickel-based chromium alloys. Titanium and aluminum bolts have limited usage, primarily in the aerospace industry.

Carbon steel is the cheapest and most common bolt material. Most hardware stores sell carbon steel bolts, which are usually zinc plated to resist corrosion. The typical ultimate strength of this bolt material is 55 ksi.

An alloy steel is a high-strength carbon steel that can be heat treated up to 300 ksi. However, it is not corrosion resistant and must therefore have some type of coating to protect it from corrosion. Aerospace alloy steel fasteners are usually cadmium plated for corrosion protection.

Bolts of stainless steel (CRES) are available in a variety of alloys with ultimate strengths from 70 to 220 ksi. The major advantage of using CRES is that it normally requires no protective coating and has a wider service temperature range than plain carbon or alloy steels.

A partial listing of bolt materials is given in table I. The following precautions are to be noted:

- (1) The bolt plating material is usually the limiting factor on maximum service temperature.
- (2) Carbon steel and alloy steel are unsatisfactory (become brittle) at temperatures below -65 °F.
- (3) Hydrogen embrittlement is a problem with most common methods of plating, unless special procedures are used. (This subject is covered more fully in the corrosion section.)
- (4) Series 400 CRES contains only 12 percent chromium and thus will corrode in some environments.
- (5) The contact of dissimilar materials can create galvanic corrosion, which can become a major problem. (Galvanic corrosion is covered in a subsequent section of this manual.)

Platings and Coatings

Most plating processes are electrolytic and generate hydrogen. Thus, most plating processes require baking after plating at a temperature well below the decomposition temperature of the plating material to prevent hydrogen embrittlement. However, heating the plating to its decomposition temperature can generate free hydrogen again. Thus, exceeding the safe operating temperature of the plating can cause premature fastener failure due to hydrogen embrittlement as well as loss of corrosion protection. (A summary of platings and coatings is given in table II.)

Cadmium Plating

The most common aerospace fastener plating material is cadmium. Plating is done by electrodeposition and is easy to accomplish. However, cadmium-plated parts must be baked at 375 °F for 23 hours, within 2 hours after plating, to prevent hydrogen embrittlement. Since cadmium melts at 600 °F, its useful service temperature limit is 450 °F.

1

TABLE I.—SUMMARY OF FASTENER MATERIALS

Material	Surface treatment	Useful design temperature limit, °F	Ultimate tensile strength at room temperature, ksi	Comments
Carbon steel	Zinc plate	-65 to 250	55 and up	
Alloy steels	Cadmium plate, nickel plate, zinc plate, or chromium plate	-65 to limiting temperature of plating	Up to 300	Some can be used at 900 °F
A-286 stainless	Passivated per MIL-S-5002	-423 to 1200	Up to 220	
17-4PH stainless	None	-300 to 600	Up to 220	
17-7PH stainless	Passivated	-200 to 600	Up to 220	
300 series stainless	Furnace oxidized	-423 to 800	70 to 140	Oxidation reduces galling
410, 416, and 430 stainless	Passivated	-250 to 1200	Up to 180	47 ksi at 1200 °F; will corrode slightly
U-212 stainless	Cleaned and passivated per MIL-S-5002	1200	185	140 ksi at 1200 °F
Inconel 718 stainless	Passivated per QQ-P-35 or cadmium plated	-423 to 900 or cadmium plate limit	Up to 220	
Inconel X-750 stainless	None	-320 to 1200	Up to 180	136 ksi at 1200 °F
Waspalloy stainless	None	-423 to 1600	150	
Titanium	None	-350 to 500	Up to 160	

Zinc Plating

Zinc is also a common type of plating. The hot-dip method of zinc plating is known commercially as galvanizing. Zinc can also be electrodeposited. Because zinc plating has a dull finish, it is less pleasing in appearance than cadmium. However, zinc is a sacrificial material. It will migrate to uncoated areas that have had their plating scratched off, thus continuing to provide corrosion resistance. Zinc may also be applied cold as a zinc-rich paint. Zinc melts at 785 °F but has a useful service temperature limit of 250 °F. (Its corrosion-inhibiting qualities degrade above 140 °F.)

Phosphate Coatings

Steel or iron is phosphate coated by treating the material surface with a diluted solution of phosphoric acid, usually by submerging the part in a proprietary bath. The chemical reaction forms a mildly protective layer of crystalline phosphate. The three principal types of phosphate coatings are

zinc, iron, and manganese. Phosphate-coated parts can be readily painted, or they can be dipped in oil or wax to improve their corrosion resistance. Fasteners are usually phosphated with either zinc or manganese. Hydrogen embrittlement seldom is present in phosphated parts. Phosphate coatings start deteriorating at 225 °F (for heavy zinc) to 400 °F (for iron phosphate).

Nickel Plating

Nickel plating, with or without a copper strike (thin plating), is one of the oldest methods of preventing corrosion and improving the appearance of steel and brass. Nickel plating will tarnish unless it is followed by chromium plating. Nickel plating is a more expensive process than cadmium or zinc plating and also must be baked the same as cadmium after plating to prevent hydrogen embrittlement. Nickel plating is good to an operating temperature of 1100 °F, but is still not frequently used for plating fasteners because of its cost.

Type of coating	Useful design temperature limit, °F	Remarks
Cadmium	450	Most common for aerospace fasteners
Zinc	140 to 250	Self-healing and cheaper than cadmium
Phosphates: Manganese Zinc Iron	225 225 to 375 400	Mildly corrosion resistant but main use is for surface treatment prior to painting. Another use is with oil or wax for deterring corrosion.
Chromium	800 to 1200	Too expensive for most applications other than decorative
Silver	1600	Most expensive coating
Black oxide (and oil)	a300	Ineffective in corrosion prevention
Preoxidation (CRES) fasteners only	1200	Prevents freeze-up of CRES threads due to oxidation after installation
Nickel	1100	More expensive than cadmium or zinc
SermaGard and Sermatel W	450 to 1000	Dispersed aluminum particles with chromates in a water-based ceramic base coat
Stalgard	475	Proprietary organic and/or organic-inorganic compound used for corrosion resistance and lubrication (in some cases)
Diffused nickel- cadmium	900	Expensive and requires close control to avoid hydrogen damage

^aOil boiling point.

Ion-Vapor-Deposited Aluminum Plating

Ion-vapor-deposited aluminum plating was developed by McDonnell-Douglas for coating aircraft parts. It has some advantages over cadmium plating:

- (1) It creates no hydrogen embrittlement.
- (2) It insulates against galvanic corrosion of dissimilar materials.
 - (3) The coating is acceptable up to 925 °F.
 - (4) It can also be used for coating titanium and aluminums.
- (5) No toxic byproducts are formed by the process.
- It also has some disadvantages:
- (1) Because the process must be done in a specially designed vacuum chamber, it is quite expensive.
- (2) Cadmium will outperform ion-vapor-deposited aluminum in a salt-spray test.

Chromium Plating

Chromium plating is commonly used for automotive and appliance decorative applications, but it is not common for fasteners. Chromium-plated fasteners cost approximately as much as stainless steel fasteners. Good chromium plating requires both copper and nickel plating prior to chromium plating. Chromium plating also has hydrogen embrittlement problems. However, it is acceptable for maximum operating temperatures of 800 to 1200 °F.

Sermatel W and SermaGard

Sermatel W and SermaGard are proprietary coatings¹ consisting of aluminum particles in an inorganic binder with chromates added to inhibit corrosion. The coating material is covered by AMS3126A, and the procedure for applying it by AMS2506. The coating is sprayed or dipped on the part and cured at 650 °F. (sps Technologies² has tested Sermatel Wcoated fasteners at 900 °F without degradation.) This coating process prevents both hydrogen embrittlement and stress corrosion, since the fastener is completely coated. Sermatel is about as effective as cadmium plating in resisting corrosion but costs about 15 percent more than cadmium. Fasteners are not presently available "off the shelf" with Sermatel W or SermaGard coating, but the company will do small orders for fasteners or mechanical parts. These coatings will take up to 15 disassemblies in a threaded area without serious coating degradation.

Stalgard

Stalgard is a proprietary coating³ process consisting of organic coatings, inorganic-organic coatings, or both for corrosion resistance. According to Stalgard test data their coatings are superior to either cadmium or zinc plating in saltspray and weathering tests. Stalgard coatings also provide galvanic corrosion protection. However, the maximum operating temperature of these organic coatings is 475 °F.

Diffused Nickel-Cadmium Plating

This process was developed by the aerospace companies for a higher temperature cadmium coating. A 0.0004-in.-thick nickel coating is plated on the substrate, followed by a 0.0002-in.-thick. cadmium plate (per AMS2416). The part is then baked for 1 hour at 645 °F. The resulting coating can withstand 1000 °F. However, the nickel plate must completely cover the part at all times to avoid cadmium damage to the part. This process is expensive and requires close control.

¹Sermatech International, Inc., Limerick, Pennsylvania.

²Jenkintown, Pennsylvania.

³Elco Industries, Rockford, Illinois.

Silver Plating

Silver plating is cost prohibitive for most fastener applications. The big exception is in the aerospace industry, where silver-plated nuts are used on stainless steel bolts. The silver serves both as a corrosion deterrent and a dry lubricant. Silver plating can be used to 1600 °F, and thus it is a good high-temperature lubricant. Since silver tarnishes from normal atmospheric exposure, the silver-plated nuts are commonly coated with clear wax to prevent tarnishing. Wax is a good room-temperature lubricant. Therefore, the normal "dry torque" values of the torque tables should be reduced by 50 percent to allow for this lubricant.

Passivation and Preoxidation

Stainless steel fasteners will create galvanic corrosion or oxidation in a joint unless they are passivated or preoxidized prior to assembly (ref. 1). Passivation is the formation of a protective oxide coating on the steel by treating it briefly with an acid. The oxide coating is almost inert. Preoxidization is the formation of an oxide coating by exposing the fasteners to approximately 1300 °F temperature in an air furnace. The surface formed is inert enough to prevent galling due to galvanic corrosion.

Black Oxide Coating

Black oxide coating, combined with an oil film, does little more than enhance the appearance of carbon steel fasteners. The oil film is the only part of the coating that prevents corrosion.

Thread Lubricants

Although there are many thread lubricants from which to choose, only a few common ones are covered here. The most common are oil, grease or wax, graphite, and molybdenum disulfide. There are also several proprietary lubricants such as Never-Seez and Synergistic Coatings. Some thread-locking compounds such as Loctite can also be used as lubricants for a bolted assembly, particularly the compounds that allow the bolts to be removed. A summary of thread lubricants is given in table III.

Oil and Grease

Although oil and grease are the most common types of thread lubricants, they are limited to an operating temperature not much greater than 250 °F. (Above this temperature the oil or grease will melt or boil off.) In addition, oil cannot be used in a vacuum environment. However, oil and grease are good for both lubrication and corrosion prevention as long as these precautions are observed.

TABLE III.—SUMMARY OF THREAD LUBRICANTS

Type of lubricant	Useful design temperature limit, °F	Remarks
Oil or grease	250	Most common; cannot be used in vacuum
Graphite	^a 212 to 250	Cannot be used in vacuum
Molybdenum disulfide	750	Can be used in vacuum
Synergistic Coatings	500	Can be used in vacuum
Neverseez	2200	Because oil boils off, must be applied after each high-temperature application
Silver Goop	1500	Do not use on aluminum or magnesium parts; extremely expensive
Thread-locking compounds	275	"Removable fastener" compounds only

aCarrier boiloff temperature

Graphite

"Dry" graphite is really not dry. It is fine carbon powder that needs moisture (usually oil or water) to become a lubricant. Therefore, its maximum operating temperature is limited to the boiling point of the oil or water. It also cannot be used in a vacuum environment without losing its moisture. Because dry graphite is an abrasive, its use is detrimental to the bolted joint if the preceding limitations are exceeded.

Molybdenum Disulfide

Molybdenum disulfide is one of the most popular dry lubricants. It can be used in a vacuum environment but turns to molybdenum trisulfide at approximately 750 °F. Molybdenum trisulfide is an abrasive rather than a lubricant.

Synergistic Coatings

These proprietary coatings⁴ are a type of fluorocarbon injected and baked into a porous metal-matrix coating to give both corrosion prevention and lubrication. However, the maximum operating temperature given in their sales literature is 500 °F. Synergistic Coatings will also operate in a vacuum environment.

11

Neverseez

This proprietary compound⁵ is a petroleum-base lubricant and anticorrodent that is satisfactory as a one-time lubricant

⁴General Magnaplate Corporation, Ventura, California.

⁵Bostic Emhart, Broadview, Illinois.

up to 2200 °F, according to the manufacturer. The oil boils off, but the compound leaves nongalling oxides of nickel, copper, and zinc between the threads. This allows the fastener to be removed, but a new application is required each time the fastener is installed. NASA Lewis personnel tested this compound and found it to be satisfactory.

Silver Goop

Silver Goop is a proprietary compound⁶ containing 20 to 30 percent silver. Silver Goop can be used to 1500 °F, but it is not to be used on aluminum or magnesium. It is extremely expensive because of its silver content.

Thread-Locking Compounds

Some of the removable thread-locking compounds (such as Loctite) also serve as antigalling and lubricating substances. However, they are epoxies, which have a maximum operating temperature of approximately 275 °F.

Corrosion

Galvanic Corrosion

Galvanic corrosion is set up when two dissimilar metals are in the presence of an electrolyte, such as moisture. A galvanic cell is created and the most active (anode) of the two materials is eroded and deposited on the least active (cathode). Note that the farther apart two materials are in the following list, the greater the galvanic action between them.

According to reference 2 the galvanic ranking of some common engineering materials is as follows:

- (1) Magnesium (most active)
- (2) Magnesium alloys
- (3) Zinc
- (4) Aluminum 5056
- (5) Aluminum 5052
- (6) Aluminum 1100
- (7) Cadmium
- (8) Aluminum 2024
- (9) Aluminum 7075
- (10) Mild steel
- (11) Cast iron
- (12) Ni-Resist
- (13) Type 410 stainless (active)
- (14) Type 304 stainless (active)
- (15) Type 316 stainless (active)
- (16) Lead
- (17) Tin
- (18) Muntz Metal
- (19) Nickel (active)

- (20) Inconel (active)
- (21) Yellow brass
- (22) Admiralty brass
- (23) Aluminum brass
- (24) Red brass
- (25) Copper
- (26) Silicon bronze
- (27) 70-30 Copper-nickel
- (28) Nickel (passive)
- (29) Inconel (passive)
- (30) Titanium
- (31) Monel
- (32) Type 304 stainless (passive)
- (33) Type 316 stainless (passive)
- (34) Silver
- (35) Graphite
- (36) Gold (least active)

Note the difference between active and passive 304 and 316 stainless steels. The difference here is that passivation of stainless steels is done either by oxidizing in an air furnace or treating the surface with an acid to cause an oxide to form. This oxide surface is quite inert in both cases and deters galvanic activity.

Because the anode is eroded in a galvanic cell, it should be the larger mass in the cell. Therefore, it is poor design practice to use carbon steel fasteners in a stainless steel or copper assembly. Stainless steel fasteners can be used in carbon steel assemblies, since the carbon steel mass is the anode.

Magnesium is frequently used in lightweight designs because of its high strength to weight ratio. However, it must be totally insulated from fasteners by an inert coating such as zinc chromate primer to prevent extreme galvanic corrosion. Cadmium- or zinc-plated fasteners are closest to magnesium in the galvanic series and would be the most compatible if the insulation coating were damaged.

Stress Corrosion

Stress corrosion occurs when a tensile-stressed part is placed in a corrosive environment. An otherwise ductile part will fail at a stress much lower than its yield strength because of surface imperfections (usually pits or cracks) created by the corrosive environment. In general, the higher the heat-treating temperature of the material (and the lower the ductility), the more susceptible it is to stress corrosion cracking.

The fastener material manufacturers have been forced to develop alloys that are less sensitive to stress corrosion. Of the stainless steels, A286 is the best fastener material for aerospace usage. It is not susceptible to stress corrosion but usually is produced only up to 160-ksi strength (220-ksi A286 fasteners are available on special order). The higher strength stainless steel fasteners (180 to 220 ksi) are usually made of 17-7PH or 17-4PH, which are stress corrosion susceptible. Fasteners made of superalloys such as Inconel 718 or MP35N are available if cost and schedule are not restricted.

⁶Swagelok Company, Solon, Ohio.

An alternative is to use a high-strength carbon steel (such as H-11 tool steel with an ultimate tensile strength of 300 ksi) and provide corrosion protection. However, it is preferable to use more fasteners of the ordinary variety and strength, if possible, than to use a few high-strength fasteners. High-strength fasteners (greater than 180 ksi) bring on problems such as brittleness, critical flaws, forged heads, cold rolling of threads, and the necessity for stringent quality control procedures. Quality control procedures such as x-ray, dye penetrant, magnetic particle, thread radius, and head radius inspections are commonly used for high-strength fasteners.

Hydrogen Embrittlement

Hydrogen embrittlement occurs whenever there is free hydrogen in close association with the metal. Since most plating processes are the electrolytic bath type, free hydrogen is present. There are three types of hydrogen-metal problems:

- (1) Hydrogen chemical reaction: Hydrogen reacts with the carbon in steel to form methane gas, which can lead to crack development and strength reduction. Hydrogen can also react with alloying elements such as titanium, niobium, or tantalum to form hydrides. Because the hydrides are not as strong as the parent alloy, they reduce the overall strength of the part.
- (2) Internal hydrogen embrittlement: Hydrogen can remain in solution interstitially (between lattices in the grain structure) and can cause delayed failures after proof testing. There is no external indication that the hydrogen is present.
- (3) Hydrogen environment embrittlement: This problem is only present in a high-pressure hydrogen environment such as a hydrogen storage tank. Unless a fastener was under stress inside such a pressure vessel, this condition would not be present.

Most plating specifications now state that a plated carbon steel fastener "shall be baked for not less than 23 hours at 375 ± 25 "F within 2 hours after plating to provide hydrogen embrittlement relief" (per MIL-N-25027D). In the past the plating specifications required baking at 375 ± 25 "F for only 3 hours within 4 hours after plating. This treatment was found to be inadequate, and most plating specifications were revised in 1981-82 to reflect the longer baking time. Hydrogen embrittlement problems also increase as the fastener strength increases.

Cadmium Embrittlement

Although hydrogen embrittlement failure of materials is well documented (ref. 3), the effects of cadmium embrittlement are not. In general, hydrogen embrittlement failure of cadmium-plated parts can start as low as 325 °F, but cadmium embrittlement can start around 400 °F. Since both elements are normally present in elevated-temperature failure of cadmium-plated parts, the combined effect of the two can be disastrous. However, the individual effect of each is indeterminate.

Locking Methods

Tapped Holes

In a tapped hole the locking technique is normally on the fastener. One notable exception is the Spiralock⁷ tap shown in figure 1. The Spiralock thread form has a 30° wedge ramp at its root. Under clamp load the crests of the male threads are wedged tightly against the ramp. This makes lateral movement, which causes loosening under vibration, nearly impossible. Independent tests by some of the aerospace companies have indicated that this type of thread is satisfactory for moderate resistance to vibration. The bolt can have a standard thread, since the tapped hole does all the locking.

Locknuts

There are various types of locking elements, with the common principle being to bind (or wedge) the nut thread to the bolt threads. Some of the more common locknuts are covered here.

Split beam.—The split-beam locknut (fig. 2) has slots in the top, and the thread diameter is undersized in the slotted portion. The nut spins freely until the bolt threads get to the slotted area. The split "beam" segments are deflected outward by the bolt, and a friction load results from binding of the mating threads.

Wedge ramps resist transverse movement

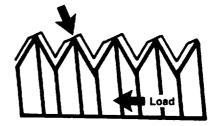



Figure 1.—Spiralock thread.

Ħ

V

Figure 2.—Split-beam locknut.

⁷Distributed by Detroit Tap & Tool Company, Detroit, Michigan, through license from H.D. Holmes.

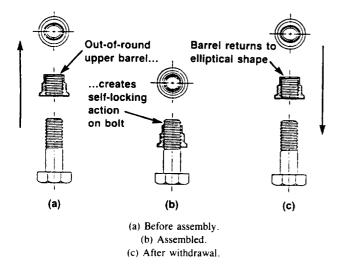


Figure 3.-Deformed-thread locknut.

Deformed thread.—The deformed-thread locknut (fig. 3) is a common locknut, particularly in the aerospace industry. Its advantages are as follows:

- (1) The nut can be formed in one operation.
- (2) The temperature range is limited only by the parent metal, its plating, or both.
- (3) The nut can be reused approximately 10 times before it has to be discarded for loss of locking capability.

Nylok pellet.—The Nylok⁸ pellet (of nylon) is usually installed in the nut threads as shown in figure 4. A pellet or patch projects from the threads. When mating threads engage, compression creates a counterforce that results in locking contact. The main drawback of this pellet is that its maximum operating temperature is approximately 250 °F. The nylon pellet will also be damaged quickly by reassembly.

Locking collar and seal.—A fiber or nylon washer is mounted in the top of the nut as shown in figure 5. The collar has an interference fit such that it binds on the bolt threads. It also provides some sealing action from gas and moisture leakage. Once again the limiting feature of this nut is the approximate 250 °F temperature limit of the locking collar.

A cost-saving method sometimes used instead of a collar or nylon pellet is to bond a nylon patch on the threads of either the nut or the bolt to get some locking action. This method is also used on short thread lengths, where a drilled hole for a locking pellet could cause severe stress concentration.

Castellated nut.—The castellated nut normally has six slots as shown in figure 6(a). The bolt has a single hole through its threaded end. The nut is torqued to its desired torque value. It is then rotated forward or backward (depending on the user's

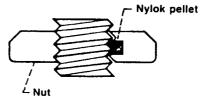


Figure 4.-Nylok pellet locknut

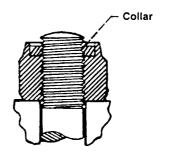
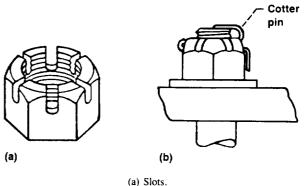



Figure 5.-Locking collar.

(b) Cotter pin locking.

Figure 6.—Castellated nut.

preference) to the nearest slot that aligns with the drilled hole in the bolt. A cotter pin is then installed to lock the nut in place as shown in figure 6(b). This nut works extremely well for low-torque applications such as holding a wheel bearing in place.

Jam nuts.—These nuts are normally "jammed" together as shown in figure 7, although the "experts" cannot agree on which nut should be on the bottom. However, this type of assembly is too unpredictable to be reliable. If the inner nut is torqued tighter than the outer nut, the inner nut will yield before the outer nut can pick up its full load. On the other hand, if the outer nut is tightened more than the inner nut, the inner nut unloads. Then the outer nut will yield before the inner nut can pick up its full load. It would be rare to get the correct amount of torque on each nut. A locknut is a much more practical choice than a regular nut and a jam nut. However, a jam nut can be used on a turnbuckle, where it does not carry any of the tension load.

⁸Nylok Fastener Corporation, Rochester, Michigan.

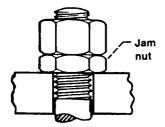


Figure 7.-Jam nut.

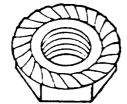
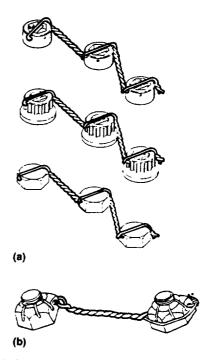



Figure 8.-Durlock nut.

Serrated-face nut (or bolthead).—The serrated face of this nut (shown in fig. 8) digs into the bearing surface during final tightening. This means that it cannot be used with a washer or on surfaces where scratches or corrosion could be a problem.

According to sps Technologies, their serrated-face bolts (Durlock 180) require 110 percent of tightening torque to loosen them. Their tests on these bolts have shown them to have excellent vibration resistance.

Lockwiring.—Although lockwiring is a laborious method of preventing bolt or nut rotation, it is still used in critical applications, particularly in the aerospace field. The nuts usually have drilled corners, and the bolts either have throughholes in the head or drilled corners to thread the lockwire through. A typical bolthead lockwiring assembly is shown in figure 9(a), and a typical nut lockwiring assembly is shown in figure 9(b).

(a) Multiple fastener application (double-twist method, single hole).(b) Castellated nuts on undrilled studs (double-twist method).

Figure 9.—Lockwiring

Direct interfering thread.—A direct interfering thread has an oversized root diameter that gives a slight interference fit between the mating threads. It is commonly used on threaded studs for semipermanent installations, rather than on bolts and nuts, since the interference fit does damage the threads.

Tapered thread.—The tapered thread is a variation of the direct interfering thread, but the difference is that the minor diameter is tapered to interfere on the last three or four threads of a nut or bolt as shown in figure 10.

Nutplates.—A nutplate (fig. 11) is normally used as a blind nut. They can be fixed or floating. In addition, they can have

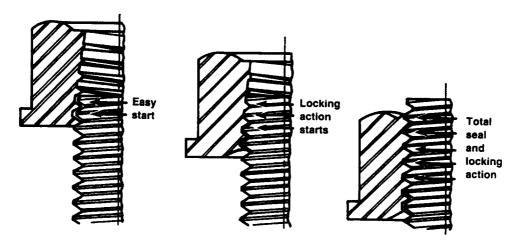


Figure 10.—Tapered thread.

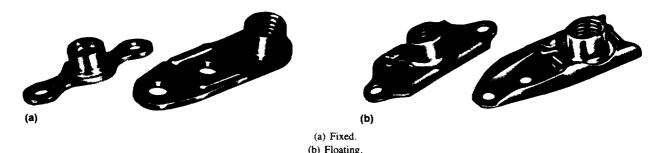


Figure 11.-Nutplate.

most of the locking and sealing features of a regular nut. Nutplates are usually used on materials too thin to tap. They are used primarily by the aerospace companies, since their installation is expensive. At least three drilled holes and two rivets are required for each nutplate installation.

Locking Adhesives

Many manufacturers make locking adhesives (or epoxies) for locking threads. Most major manufacturers make several grades of locking adhesive, so that the frequency of disassembly can be matched to the locking capability of the adhesive. For example, Loctite 242 is for removable fasteners, and Loctite 2719 is for tamperproof fasteners. Other manufacturers such as Bostik, ND Industries, Nylock, 3M, and Permaloc make similar products.

Most of these adhesives work in one of two ways. They are either a single mixture that hardens when it becomes a thin layer in the absence of air or an epoxy in two layers that does not harden until it is mixed and compressed between the mating threads. Note that the two-layer adhesives are usually put on the fastener as a "ribbon" or ring by the manufacturer. These ribbons or rings do have some shelf life, as long as they are not inadvertently mixed or damaged.

These adhesives are usually effective as thread sealers as well. However, none of them will take high temperatures. The best adhesives will function at 450 °F; the worst ones will function at only 200 °F.

Washers

Belleville Washers

Belleville washers (fig. 12) are conical washers used more for maintaining a uniform tension load on a bolt than for locking. If they are not completely flattened out, they serve as a spring in the bolt joint. However, unless they have serrations on their surfaces, they have no significant locking capability. Of course, the serrations will damage the mating surfaces under them. These washers can be stacked in combinations as shown in figure 13 to either increase the total spring length (figs. 13(a) and (c)) or increase the spring constant (fig. 13(b)).

Lockwashers

The typical helical spring washer shown in figure 14 is made of slightly trapezoidal wire formed into a helix of one coil so that the free height is approximately twice the thickness of the washer cross section. They are usually made of hardened carbon steel, but they are also available in aluminum, silicon, bronze, phosphor-bronze, stainless steel, and K-Monel.

The lockwasher serves as a spring while the bolt is being tightened. However, the washer is normally flat by the time the bolt is fully torqued. At this time it is equivalent to a solid flat washer, and its locking ability is nonexistent. In summary, a lockwasher of this type is useless for locking.

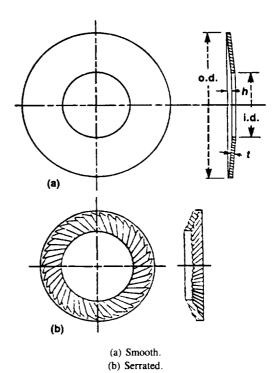
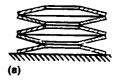
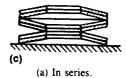




Figure 12.—Types of Belleville washers.

⁹Loctite Corporation, Newington, Connecticut.

(b) In parallel. (c) In-parallel series.

Figure 13.-Combinations of Belleville washers.

Figure 14.—Helical spring washers.

Tooth (or Star) Lockwashers

Tooth lockwashers (fig. 15) are used with screws and nuts for some spring action but mostly for locking action. The teeth are formed in a twisted configuration with sharp edges. One edge bites into the bolthead (or nut) while the other edge bites into the mating surface. Although this washer does provide some locking action, it damages the mating surfaces. These scratches can cause crack formation in highly stressed fasteners, in mating parts, or both, as well as increased corrosion susceptibility.

Self-Aligning Washers

A self-aligning washer is used with a mating nut that has conical faces as shown in figure 16. Because there is both a weight penalty and a severe cost penalty for using this nut, it should be used only as a last resort. Maintaining parallel mating surfaces within acceptable limits (2° per SAE Handbook (ref. 4)) is normally the better alternative.

Figure 15.—Tooth lockwashers.

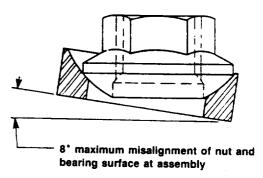


Figure 16.--Self-aligning nut.

Inserts

An insert is a special type of device that is threaded on its inside diameter and locked with threads or protrusions on its outside diameter in a drilled, molded, or tapped hole. It is used to provide a strong, wear-resistant tapped hole in a soft material such as plastic and nonferrous materials, as well as to repair stripped threads in a tapped hole.

The aerospace industry uses inserts in tapped holes in soft materials in order to utilize small high-strength fasteners to save weight. The bigger external thread of the insert (nominally 1/8 in. bigger in diameter than the internal thread) gives, for example, a 10-32 bolt in an equivalent 5/16-18 nut.

In general, there are two types of inserts: those that are threaded externally, and those that are locked by some method other than threads (knurls, serrations, grooves, or interference fit). Within the threaded inserts there are three types: the wire thread, the self-tapping, and the solid bushing.

Threaded Inserts

Wire thread.—The wire thread type of insert (Heli-coil 10)

¹⁰Emhart Fastening Systems Group, Heli-Coil Division, Danbury, Connecticut.

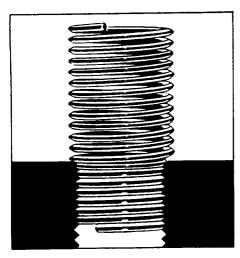


Figure 17.—Wire thread insert installation.

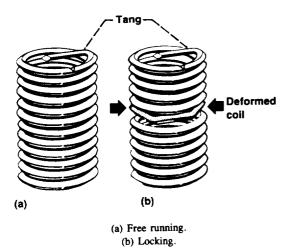


Figure 18.—Wire thread insert types.

is a precision coil of diamond-shaped CRES wire that forms both external and internal threads as shown in figure 17. The coil is made slightly oversize so that it will have an interference fit in the tapped hole. In addition, this insert is available with a deformed coil (fig. 18) for additional locking. The tang is broken off at the notch after installation.

The wire thread insert is the most popular type for repair of a tapped hole with stripped threads, since it requires the least amount of hole enlargement. However, the solid bushing insert is preferred if space permits.

Self-tapping.—Most of the self-tapping inserts are the solid bushing type made with a tapered external thread similar to a self-tapping screw (fig. 19). There are several different

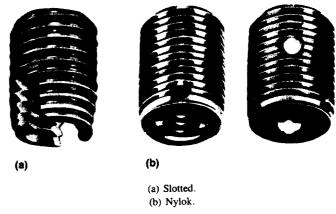


Figure 19.—Self-tapping inserts.

locking combinations, such as the Nylok plug (fig. 19(b)) or the thread-forming Speedsert¹¹ deformed thread (fig. 20). An additional advantage of the thread-forming insert is that it generates no cutting chips, since it does not cut the threads. However, it can only be used in softer materials.

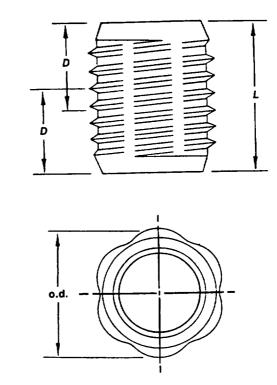


Figure 20.-Speedsert.

¹¹Rexnord Specialty Fasteners Division, Torrance, California.

Solid bushing.—Solid bushing inserts have conventional threads both internally and externally. A popular type is the Keensert¹¹ shown in figure 21. The locking keys are driven in after the insert is in place. Another manufacturer uses a two-prong ring for locking. These inserts are also available with distorted external thread or Nylok plugs for locking.

Nonthreaded Inserts

Plastic expandable.—The most familiar of the nonthreaded inserts is the plastic expandable type shown in figure 22. This insert has barbs on the outside and longitudinal slits that allow it to expand outward as the threaded fastener is installed, pushing the barbs into the wall of the drilled hole. (See ref. 5.)

Molded in place.—This type of insert (fig. 23) is knurled or serrated to resist both pullout and rotation. It is commonly used with ceramics, rubber, and plastics, since it can develop higher resistance to both pullout and rotation in these materials than self-tapping or conventionally threaded inserts. (See ref. 5.)

Ultrasonic.—Ultrasonic inserts (fig. 24) have grooves in various directions to give them locking strength. They are installed in a prepared hole by pushing them in while they are being ultrasonically vibrated. The ultrasonic vibration melts the wall of the hole locally so that the insert grooves are "welded" in place. Since the area melted is small, these inserts do not have the holding power of those that are molded in place. Ultrasonic inserts are limited to use in thermoplastics. (See ref. 5.)

Figure 21.—Keensert.

Figure 22.—Plastic expandable insert.

Figure 23.-Molded-in-place insert.

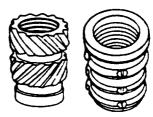


Figure 24.—Ultrasonic inserts.

Threads

Types of Threads

Since complete information on most threads can be found in the ANSI standards (ref. 6), the SAE Handbook (ref. 4), and the National Institute of Standards and Technology (formerly the National Bureau of Standards) Handbook H-28 (ref. 7) no thread standards will be included in this handbook. The goal here is to explain the common thread types, along with their advantages and disadvantages. The common thread types are unified national coarse (UNC), unified national fine (UNF), unified national extra fine (UNEF), UNJC, UNJF, UNR, UNK, and constant-pitch threads.

Unified national coarse.—UNC is the most commonly used thread on general-purpose fasteners. Coarse threads are deeper than fine threads and are easier to assemble without cross threading. The manufacturing tolerances can be larger than for finer threads, allowing for higher plating tolerances. UNC threads are normally easier to remove when corroded, owing to their sloppy fit. However, a UNC fastener can be procured with a class 3 (tighter) fit if needed (classes to be covered later).

Unified national fine.—UNF thread has a larger minor diameter than UNC thread, which gives UNF fasteners slightly higher load-carrying and better torque-locking capabilities than UNC fasteners of the same identical material and outside diameter. The fine threads have tighter manufacturing tolerances than UNC threads, and the smaller lead angle allows for finer tension adjustment. UNF threads are the most widely used threads in the aerospace industry.

Ħ

Unified national extra fine.—UNEF is a still finer type of thread than UNF and is common to the aerospace field. This thread is particularly advantageous for tapped holes in hard materials and for thin threaded walls, as well as for tapped holes in thin materials.

UNJC and UNJF threads.—"J" threads are made in both external and internal forms. The external thread has a much larger root radius than the corresponding UNC, UNR, UNK, or UNF threads. This radius is mandatory and its inspection is required, whereas no root radius is required on UNC, UNF, or UNEF threads. Since the larger root radius increases the minor diameter, a UNJF or UNJC fastener has a larger net tensile area than a corresponding UNF or UNC fastener. This root radius also gives a smaller stress concentration factor in the threaded section. Therefore, high-strength (≥ 180 ksi) bolts usually have "J" threads.

UNR threads.—The UNR external thread is a rolled UN thread in all respects except that the root radius must be rounded. However, the root radius and the minor diameter are not checked or toleranced. There is no internal UNR thread.

UNK threads.—The UNK external threads are similar to UNR threads, except that the root radius and the minor diameter are toleranced and inspected. There is no internal UNK thread.

According to a survey of manufacturers conducted by the Industrial Fasteners Institute, nearly all manufacturers of externally threaded fasteners make UNR rolled threads rather than plain UN. The only exception is for ground or cut threads.

Constant-pitch threads.—These threads offer a selection of pitches that can be matched with various diameters to fit a particular design. This is a common practice for bolts of 1-in. diameter and above, with the pitches of 8, 12, or 16 threads per inch being the most common.

A graphical and tabular explanation of UN, UNR, UNK, and UNJ threads is given on page M-6 of reference 8. A copy (fig. 25) is enclosed here for reference.

Classes of Threads

Thread classes are distinguished from each other by the amounts of tolerance and allowance. The designations run from 1A to 3A and 1B to 3B for external and internal threads, respectively. A class 1 is a looser fitting, general-purpose thread; a class 3 is the closer-toleranced aerospace standard thread. (The individual tolerances and sizes for the various classes are given in the SAE Handbook (ref 4).)

Forming of Threads

Threads may be cut, hot rolled, or cold rolled. The most common manufacturing method is to cold form both the head and the threads for bolts up to 1 in. in diameter. For bolts above 1-in. diameter and high-strength smaller bolts, the heads are hot forged. The threads are still cold rolled until the bolt size prohibits the material displacement necessary to form the threads (up to a constant pitch of eight threads per inch). Threads are cut only at assembly with taps and dies or by lathe cutting.

Cold rolling has the additional advantage of increasing the strength of the bolt threads through the high compressive surface stresses, similar to the effects of shot peening. This process makes the threads more resistant to fatigue cracking.

Fatigue-Resistant Bolts

If a bolt is cycled in tension, it will normally break near the end of the threaded portion because this is the area of maximum stress concentration. In order to lessen the stress concentration factor, the bolt shank can be machined down to the root diameter of the threads. Then it will survive tensile cyclic loading much longer than a standard bolt with the shank diameter equal to the thread outside diameter.

Fatigue (Cyclic) Loading of Bolts

The bolted joint in figure 26 (from ref. 9) is preloaded with an initial load F_i , which equals the clamping load F_c , before the external load F_e is applied. The equation (from ref. 11) for this assembly is

$$F_b = F_i + \left(\frac{K_b}{K_b + K_c}\right) F_e$$

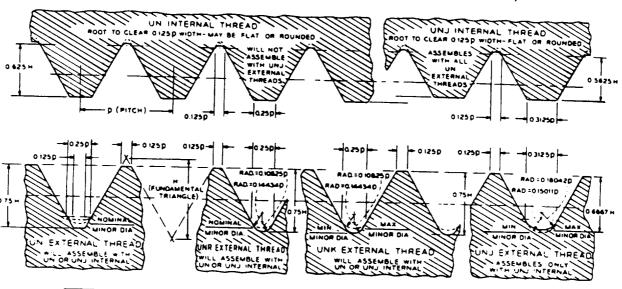
where F_b is the total bolt load. In this equation K_b is the spring constant of the bolt and K_c is the spring constant of the clamped faces. To see the effects of the relative spring constants, let $R = K_c/K_b$. Then (from ref. 10)

$$F_b = F_i + \left(\frac{1}{1+R}\right) F_e$$

In a normal clamped joint K_c is much larger than K_b $(R \approx 5.0 \text{ for steel bolt and flanges})$, so that the bolt load does not increase much as the initial external load F_c is applied. (Note that the bolt load does not increase significantly until F_c exceeds F_i .)

In order to further clarify the effect of externally applied loads, a series of triangular diagrams (fig. 27, from ref. 11) can be used to illustrate loading conditions.

Triangle OAB is identical in all four diagrams. The slope of OA represents the bolt stiffness; the slope of AB represents the joint stiffness (joint is stiffer than bolt by ratio OC/CB.) In figure 27(a) the externally applied load $F_e(a)$ does not load the bolt to its yield point. In figure 27(b) the bolt is loaded by $F_e(b)$ to its yield point, with the corresponding decrease in clamping load to F_{CL} . In figure 27(c) external load $F_e(c)$ has caused the bolt to take a permanent elongation such that the clamping force will be less than F_i when $F_e(c)$ is removed. In figure 27(d) the joint has completely separated on its way to bolt failure.


Note that the flatter the slope of OA (or the larger the ratio OC/OB becomes), the smaller the effect F_e has on bolt load. Therefore, using more smaller-diameter fasteners rather than a few large-diameter fasteners will give a more fatigue-resistant joint.

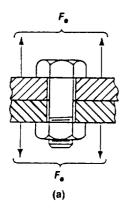
Referring to figure 27(a), note that the cyclic (alternating) load is that portion above F_i . This is the alternating load

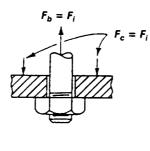
ORIGINAL PAGE IS OF POOR QUALITY

This page is not a screw thread standard, should not be used as a working sheet, and should only refer the read-er to the proper ANSI Standards document wherein the full thread details on working data are contained.

60° SCREW THREAD NOMINAL FORMS (SEE ANSI STANDARDS FOR FURTHER DETAILS)

THREAD IDENTIFICATION	UN THREADS	UNR THREADS	UNK THREADS	UNJ THREADS
	Internal and External	External Only	External Only	Internal and Externa
ANSI ¹ STANDARDS DOCUMENTS	Unified Screw Threads B1.1–1960 (See Page M–7) Metric Translation B1.1a–1968 Gages and Gaging for Unified Screw Threads B1.2–1966	Unified Screw Threads 81.1—1960 See Page M—7) Metric Translation 81.10—1968 (Draff) UNR Addendum to 81.1—1960 (See Page M—19) Gages and Gaging for Unified Screw Threads 81.2—1966	Droft) B1.14 for Form and Conformance	Draft: B1-1.5 for Form and Conformance No Radius Required on Internal Thread.
EXTERNAL ROOT	External Thread Root may be Flat or Rounded	External Thread Root Radius Required	External Thread Root Radius Mandatory Check Required	External Thread Root Radius Mandatory Check Required
EXTERNAL MINOR DIAMETER	External Thread Minor Diameter is not Toleranced	External Thread Minor Diameter is not Toleranced	External Thread Minor Diameter is Taieranced	External Thread Minor Diameter is Taleranced
EXTERNAL THREADS	UN Classes I.A. 2A and 3A	UNR Classes FA, 2A and 3A	UNK Classes 2A and 3A	UNJ Class 3A Mates only with UNJ Internal Threads
INTERNAL THREADS	UN Classes 18, 28 and 38	No Internal Threads Designated UNR UNR Mates with UN Internal Thread	No Internal Threads Designated UNK Mates with UN or UNJ Internal Thread	UNJ Classes 38 and 38G No Radius Required on Internal Thread
ANGLE AND	Individually Equivalent to 50% of P.D. Tolerance	Individually Equivalent to 50% of P.D. Talerance	Individually Equivalent to 40% of P.D. Tolerance	Individually Equivalen to 40% of P.D. Taleranc
TOLERANCE	Checked only when Specified	Checked only when Specified	Mandatory Check Required	Mandatory Check Required


NOTES: 1. Refer to the appropriate Standards, as listed for complete thread details and conformance data. The appropriate current Standard is the authoritative document.


These Standards may be obtained inrough ASME.

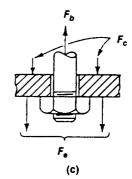
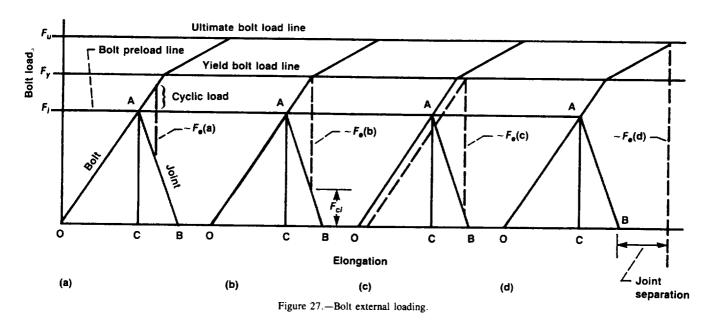

for complete details and data, and takes precedence over this sheet.

Figure 25.—Explanation of UN, UNR, UNK, and UNJ threads. (From ref. 8.) Reprinted with permission of Industrial Fasteners Institute.



- (b)
 (a) Bolted flanges with external load.
- (b) Free body with no external load.
- (c) Free body with external load.

Figure 26.—Fatigue loading of bolts.

(stress) to be used on a stress-versus-load-cycles diagram of the bolt material to predict the fatigue life of the bolts. Note that an initial preload F_i near the bolt yields minimizes cyclic loading.

Thermal Cyclic Loading of Bolts

If the bolt and joint are of different materials, an operating temperature higher or lower than the installation temperature can cause problems. Differential contraction can cause the joint to unload (or separate); differential expansion can cause overloading of the fasteners. In these cases it is common practice to use conical washers (see washer section of this manual) to give additional adjustments in fastener and joint loading.

Fastener Torque

Determining the proper torque for a fastener is the biggest problem in fastener installation. Some of the many variables causing problems are

- (1) The coefficient of friction between mating threads
- (2) The coefficient of friction between the bolthead (or nut) and its mating surface
- (3) The effect of bolt coatings and lubricants on the friction coefficients
- (4) The percentage of bolt tensile strength to be used for preload
- (5) Once agreement is reached on item 4, how to accurately determine this value
- (6) Relative spring rates of the structure and the bolts

TABLE IV.—COEFFICIENTS OF STATIC AND SLIDING FRICTION [From ref. 12.]

Materials		Static	S	Sliding			Static	IS	Sliding
	Dry	Greasy	Dry	Greasy	Maleriais	Dry	Greasy	Dry	Greasy
Hard steel on hard steel	0.78(1)	0.11(1,a)	0.42(2)	0.029(5,k)	Tungsten carbide on tungsten carbide	0.2(22)	0.12(22,a)		
	:	0.23(1,b)	:	0.081(5,e)	Tungsten carbide on steel	0.5(22)	0.08 (22.a)		
		0.15(1.c)		0.080(5,i)	Tungsten carbide on copper	0.35(23)		:	
	:	0.11(1,d)		0.058(5,j)	Tungsten carbide on iron	0.8(23)		:	:
		0.0075(18.p)		0.084(5,d)	Bonded carbide on copper	0.35(23)			
		0.0052(18,h)	:	0.105(5,k)	Bonded carbide on iron	0.8(23)			
	:		:	0.096(5,1)	Cadmium on mild steel			0.46(3)	
				0.108(5,m)	Copper on mild steel	0.53(8)		0.36(3)	0.18(17,a)
			:	0.12(5,a)	Nickel on nickel	1.10(16)		0.53(3)	0.12(3,w)
Mild steel on mild steel	0.74(19)		0.57(3)	0.09(3,a)	Brass on mild steel	0.51(8)		0.44(6)	
			:	0.19(3,u)	Brass on cast iron			0.30(6)	
Hard steel on graphite		0.09(1.a)			Zinc on cast iron	0.85(16)		0.21(7)	:
Hard steel on babbitt (ASTM No. 1)	0.70(11)	0.23(1,b)	0.33(6)	0.16(1,b)	Magnesium on cast iron			0.25(7)	:
		0.15(1,c)		0.06(1,c)	Copper on cast iron	1.05(16)		0.29(7)	
		0.08(1.d)		0.11(1,d)	Tin on cast iron			0.32(7)	
	:	0.085(1,e)	:		Lead on cast iron	:		0.43(7)	
Hard steel on babbitt (ASTM No. 8)	0.42(11)	0.17(1,b)	0.35(11)	0.14(1,b)	Aluminum on aluminum	1.05(16)		1.4(3)	
		0.11(1,c)	:	0.065(1,c)	Glass on glass	0.94(8)	0.01(10,p)	0.40(3)	0.09(3,a)
			:	(p,1)70.0			0.005(10,q)		0.116(3,v)
		0.08(1,e)		0.08(11,h)	Carbon on glass	:		0.18(3)	
Hard steel on babbitt (ASTM No. 10)	:			0.13(1,b)	Garnet on mild steel	:		0.39(3)	
	:	0.12(1,c)		0.06(1,c)	Glass on nickel	0.78(8)		0.56(3)	
	:::::::::::::::::::::::::::::::::::::::	0.10(1,d)		0.055(1,d)	Copper on glass	0.68(8)		0.53(3)	
		0.11(1,e)	:		Cast iron on cast iron	1.10(16)		0.15(9)	0.070(9,d)
Mild steel on cadmium silver				0.097(2,f)				:	0.064(9,n)
Mild steel on phosphor bronze			0.34(3)	0.173(2,0)	Bronze on cast iron			0.22(9)	0.77(9,n)
Mild steel on copper lead				0.145(2.f)	Oak on oak (parallel to grain)	0.62(9)		0.48(9)	0.164(9,r)
Mild steel on cast iron		0.183(15.c)	0.23(6)	0.133(2,f)		:		:	0.067(9.s)
Mild steel on lead	0.95(11)	0.5(1.0)	0.95(11)	0.3(11,f)	Oak on oak (perpendicutar)	0.54(9)		0.32(9)	0.072(9,s)
			0.64(3)	0.178(3,x)	Leather on oak (parallel)	0.61(9)		0.52(9)	
	0.61(8)		0.47(3)		Cast iron on oak			0.49(9)	0.075(9,n)
			0.42(3)		Leather on cast iron	:		0.56(9)	0.36(9,t)
Teflor on Teflor	0.6(22)	0.08(22,y)	:	0.000					0.13(9,n)
Teflon on steel	0.04(22)			0.04(22.0)	Fluted rubber bearing on steel	:		0.35(12)	0.05(12.1)
									0.00(10,1)

(1) Campbell, Trans. ASME, 1939; (2) Clarke, Lincoln, and Sterrett, Proc. API, 1935; (3) Beare and Bowden, Phil. Trans. Roy. Soc., 1985; (4) Dokos, Trans. ASME, 1946; (5) Boyd and Robertson, Trans. ASME, 1945; (6) Sachs, zeit f. angew. Math. and Mech., 1924; (7) Honda and Yamada, Jour. I of M, 1925; (8) Tomlinson, Phil. Mag., 1929; (9) Morin, Acad. Roy. des Sciences, 1838; (10) Claypoole, Trans. ASME, 1943; (11) Tabor, Jour. Applied Phys., 1945; (12) Eyssen, General Discussion on Lubrication, ASME, 1937; (13) Brazier and Holland-Bowyer, General Discussion on Lubrication, ASME, 1937; (14) Burwell; Jour. SAE, 1942; (15) Stanton, "Friction", Longmans; (16) Ernst and Merchant, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (18) Hardy and Bircumshaw, Proc. Roy.

Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; (20) Bowden and Young, Proc. Roy. Soc., 1951; (21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowden and Tabor, "The Friction and Lubrication of Solids." Oxford; (23) Shooter, Research, 4, 1951.

(a) Oleic acid; (b) Atlantic spindle oil (light mineral); (c) castor oil; (d) lard oil; (e) Atlantic spindle oil plus 2 percent oleic acid; (f) medium mineral oil; (g) medium mineral oil plus ½ percent oleic acid; (h) stearic acid; (i) grease (zinc oxide base); (j) graphite; (k) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium mineral); (n) oilve oil; (p) palmitic acid; (q) ricinoleic acid; (r) dry soap; (s) lard; (u) water; (u) rape oil; (v) 3-in-1 oil; (w) octyl alcohol; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

Reprinted from Baumeister, et al. "Mark's Standard Handbook for Mechanical Engineers," 8th ed., 1978, with permission of McGraw-Hill Book Co., Inc.

- (7) Interaction formulas to be used for combining simultaneous shear and tension loads on a bolt (Should friction loads due to bolt clamping action be included in the interaction calculations?)
- (8) Whether "running torque" for a locking device should be added to the normal torque

Development of Torque Tables

The coefficient of friction can vary from 0.04 to 1.10, depending on the materials and the lubricants being used between mating materials. (Table IV from ref. 12 gives a variety of friction coefficients.) Since calculated torque values are a function of the friction coefficients between mating threads and between the bolthead or nut and its mating surface, it is vitally important that the torque table values used are adjusted to reflect any differences in friction coefficients between those used to calculate the table and the user's values. Running torque should be included in the values listed in the tables because any torque puts shear load on the bolt.

The torque values in table V have been calculated as noted in the footnotes, by using formulas from reference 13. (A similar table was published in *Product Engineering* by Arthur Korn around 1944.)

Higher torques (up to theoretical yield) are sometimes used for bolts that cannot be locked to resist vibration. The higher load will increase the vibration resistance of the bolt, but the bolt will yield and unload if its yield point is inadvertently exceeded. Since the exact yield torque cannot be determined without extensive instrumentation, it is not advisable to torque close to the bolt yield point.

Fastener proof load is sometimes listed in the literature. This value is usually 75 percent of theoretical yield, to prevent inadvertent yielding of the fastener through torque measurement inaccuracies.

Alternative Torque Formula

A popular formula for quick bolt torque calculations is T = KFd, where T denotes torque, F denotes axial load, d denotes bolt diameter, and K(torque coefficient) is a calculated value from the formula:

$$K = \left(\frac{d_m}{2d}\right) \frac{\tan \psi + \mu \sec \alpha}{1 - \mu \tan \psi \sec \alpha} + 0.625\mu_c$$

as given in reference 14 (p. 378) where

 d_m thread mean diameter

 ψ thread helix angle

μ friction coefficient between threads

α thread angle

 μ_c friction coefficient between bolthead (or nut) and clamping surface

The commonly assumed value for K is 0.2, but this value should not be used blindly. Table VI gives some calculated values of K for various friction coefficients. A more realistic "typical" value for K would be 0.15 for steel on steel. Note that μ and μ_c are not necessarily equal, although equal values were used for the calculated values in table VI.

Torque-Measuring Methods

A number of torque-measuring methods exist, starting with the mechanic's "feel" and ending with installing strain gages on the bolt. The accuracy in determining the applied torque values is cost dependent. Tables VII and VIII are by two different "experts," and their numbers vary. However, they both show the same trends of cost versus torque accuracy.

Design Criteria

Finding Shear Loads on Fastener Group

When the load on a fastener group is eccentric, the first task is to find the centroid of the group. In many cases the pattern will be symmetrical, as shown in figure 28. The next step is to divide the load R by the number of fasteners n to get the direct shear load P_c (fig. 29(a)). Next, find $\sum r_n^2$ for the group of fasteners, where r_n is the radial distance of each fastener from the centroid of the group. Now calculate the moment about the centroid (M = Re from fig. 28). The contributing shear load for a particular fastener due to the moment can be found by the formula

$$P_e = \frac{Mr}{\sum r_n^2}$$

where r is the distance (in inches) from the centroid to the fastener in question (usually the outermost one). Note that this is analogous to the torsion formula, f = Tr/J, except that P_e is in pounds instead of stress. The two loads (P_c and P_e) can now be added vectorally as shown in figure 29(c) to get the resultant shear load P (in pounds) on each fastener. Note that the fastener areas are all the same here. If they are unequal, the areas must be weighted for determining the centroid of the pattern.

Further information on this subject may be found in references 16 and 17.

Finding Tension Loads on Fastener Group

This procedure is similar to the shear load determination, except that the centroid of the fastener group may not be the geometric centroid. This method is illustrated by the bolted bracket shown in figure 30.

The pattern of eight fasteners is symmetrical, so that the tension load per fastener from P_1 will be $P_1/8$. The additional

TABLE V.-BOLT TORQUE

[No lubrication on threads. Torque values are based on friction coefficients of 0.12 between threads and 0.14 between nut and washer or head and washer, as manufactured (no special cleaning).]

Size	Root area,	Torque range
	in. ²	(class 8, 150 ksi,
		bolts a)
	 	
10-24	0.0145	23 to 34 inlb
10-32	.0175	29 to 43 inlb
14-20	.0269	54 to 81 inlb
14-4-28	.0326	68 to 102 inlb
⁵ / ₁₆ -18	.0454	117 to 176 inlb
5/16-24	.0524	139 to 208 inlb
₹-16	.0678	205 to 308 inlb
% -24	.0809	230 to 345 inlb
$\frac{7}{16}$ – 14	.0903	28 to 42 ft-lb
⁷ / ₁₆ -20	.1090	33 to 50 ft-lb
1/2-13	.1257	42 to 64 ft-lb
1/2-20	.1486	52 to 77 ft-lb
% ₁₆ -12	.1620	61 to 91 ft-lb
% ₁₆ -18	.1888	73 to 109 ft-lb
%-11	.2018	84 to 126 ft-lb
% -18	.2400	104 to 156 ft-lb
¾ −10	.3020	b117 to 176 ft-lb
¾ -16	.3513	b139 to 208 ft-lb
74-9	.4193	b184 to 276 ft-lb
78-14	.4805	^b 213 to 320 ft-lb
1-8	.5510	b276 to 414 ft-lb
1-14	.6464	b323 to 485 ft-lb
1 1/8 - 7	.6931	b390 to 585 ft-lb
11/8-12	.8118	b465 to 698 ft-lb
14-7	.8898	b559 to 838 ft-lb
114-12	1.0238	⁶ 655 to 982 ft-lb

^aThe values given are 50 and 75 percent of theoretical yield strength of a bolt material with a yield of 120 ksi. Corresponding values for materials with different yield strengths can be obtained by multiplying these table values by the ratio of the respective material yield strengths.

^bBolts of 0.75-in. diameter and larger have reduced allowables (75 percent of normal strength) owing to inability to heat treat this large a cross section to an even hardness.

Reprinted from Machine Design, Nov. 19, 1987. Copyright, 1987 by Penton Publishing, Inc., Cleveland, OH.

TABLE VI.-TORQUE COEFFICIENTS

Frictio	Torque	
Between threads,	Between bolthead (or nut) and clamping surface, μ_c	coefficient, K
0.05 .10 .15 .20	0.05 .10 .15 .20	0.074 .133 .189 .250

TABLE VII.—INDUSTRIAL FASTENERS INSTITUTE'S TORQUE-MEASURING METHOD

[From ref. 8.]

1

Accuracy, percent	Relative cost
±35	i
±25	1.5
± 15	3
± 10	7
±3 to 5	15
±1	20
	#35 #25 #15 #10 #3 to 5

moment P_2h will also produce a tensile load on some fasteners, but the problem is to determine the "neutral axis" line where the bracket will go from tension to compression. If the plate is thick enough to take the entire moment P_2h in bending at the edge AB, that line could be used as the heeling point, or neutral axis. However, in this case, I have taken the conservative approach that the plate will not take the bending and will heel at the line CD. Now the $\sum r_n^2$ will only include bolts 3 to 8, and the r_n 's (in inches) will be measured from line CD. Bolts 7 and 8 will have the highest tensile loads (in pounds), which will be $P = P_T + P_M$, where $P_T = P_1/8$ and

$$P_m = \frac{Mr}{\sum r_n^2} = \frac{P_2 h r_7}{\sum r_n^2}$$

An alternative way of stating this relationship is that the bolt load is proportional to its distance from the pivot axis and the moment reacted is proportional to the sum of the squares of the respective fastener distances from the pivot axis.

At this point the applied total tensile load should be compared with the total tensile load due to fastener torque. The torque should be high enough to exceed the maximum applied tensile load in order to avoid joint loosening or leaking. If the bracket geometry is such that its bending capability cannot be readily determined, a finite element analysis of the bracket itself may be required.

Combining Shear and Tensile Fastener Loads

When a fastener is subjected to both tensile and shear loading simultaneously, the combined load must be compared with the total strength of the fastener. Load ratios and interaction curves are used to make this comparison. The load ratios are

$$R_S(\text{or } R_1) = \frac{\text{Actual shear load}}{\text{Allowable shear load}}$$

$$R_T$$
(or R_2) = $\frac{\text{Actual tensile load}}{\text{Allowable tensile load}}$

ORIGINAL PAGE IS OF POOR QUALITY

TABLE VIII.—MACHINE DESIGN'S TORQUE-MEASURING METHOD

[From ref. 15.]

(a) Typical tool accuracies

Type of	Element	Typical
tool	controlled	accuracy range,
		percent of
		full scale
Slug wrench	Turn	1 Flat
Bar torque wrench	Torque	±3 to 15
_	Turn	1/4 Flat
Impact wrench	Torque	±10 to 30
	Turn	±10 to 20°
Hydraulic wrench	Torque	± 3 to ± 10
	Turn	±5 to 10°
Gearhead air-	Torque	± 10 to ± 20
powered wrench	Turn	±5 to 10°
Mechanical	Torque	±5 to 20
multiplier	Turn	±2 to 10°
Worm-gear torque	Torque	±0.25 to 5
wrench	Turn	±1 to 5°
Digital torque	Torque	$\pm 1/4$ to 1
wrench	Turn	1/4 Flat
Ultrasonically	Bolt elongation	±1 to 10
controlled wrench		
Hydraulic tensioner	Initial bolt stretch	±1 to 5
Computer-controlled	Simultaneous	±0.5 to 2
tensioning	torque and turn	

(b) Control accuracies

Element controlled	Preload accuracy, percent	To maximize accuracy
Torque	±15 to ±30	Control bolt, nut, and washer hardness, dimensions, and finish. Have consistent lubricant conditions, quantities, application, and types.
Turn	±15 to ±30	Use consistent snug torque. Control part geometry and finish. Use new sockets and fresh lubes.
Torque and turn	±10 to ±25	Plot torque vs turn and compare to pre- viously derived set of curves. Control bolt hardness, finish, and geometry.
Torrere past yield	±3 to ±10	Use "soft" bolts and tighten well past yield point. Use consistent snugging torque. Control bolt hardness and dimensons.
Bolt stretch	±1 to ±8	Use bolts with flat, parallel ends. Leave transducer engaged during tightening operation. Mount transducer on bolt centerline.

ORIGINAL PAGE IS OF POOR QUALITY

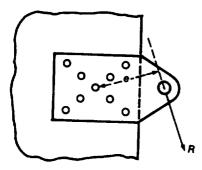


Figure 28.—Symmetrical load pattern.

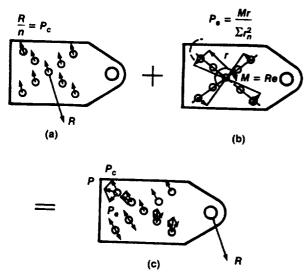


Figure 29.—Combining of shear and moment loading.

The interaction curves of figure 31 are a series of curves with their corresponding empirical equations. The most conservative is $R_1 + R_2 = 1$ and the least conservative is $R_1^3 + R_2^3 = 1$. This series of curves is from an old edition of MIL-HDBK-5. It has been replaced by a single formula, $R_S^3 + R_T^2 = 1$, in the latest edition (ref. 18). However, it is better to use $R_T + R_S = 1$ if the design can be conservative with respect to weight and stress.

Note that the interaction curves do not take into consideration the friction loads from the clamped surfaces in arriving at bolt shear loads. In some cases the friction load could reduce the bolt shear load substantially.

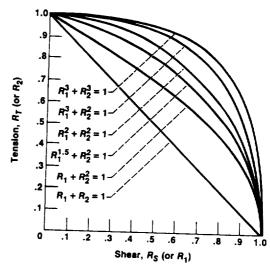


Figure 31.—Interaction curves.

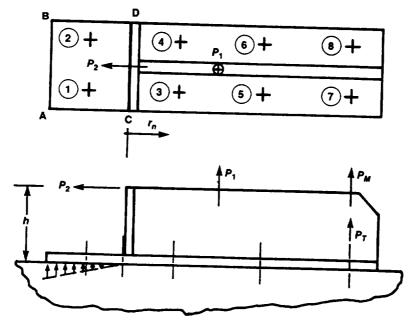


Figure 30.-Bolted bracket.

The margin of safety 12 for a fastener from figure 31 is

$$MS = \frac{1}{R_S^x + R_T^y} - 1$$

depending on which curve is used. However, note that $R_S^x + R_T^y < 1$ is a requirement for a positive margin of safety. This formula also illustrates why high torque should not be applied to a bolt when the dominant load is shear.

The margin of safety is calculated for both yield and ultimate material allowables, with the most critical value controlling the design. A material with a low yield will be critical for yield stress, and a material with a high yield will normally be critical for ultimate stress.

Calculating Pullout Load for Threaded Hole

In many cases a bolt of one material may be installed in a tapped hole in a different (and frequently lower strength) material. If the full strength of the bolt is required, the depth of the tapped hole must be determined for the weaker material by using the formula

$$P = \frac{\pi d_m F_s L}{3}$$

where

P pullout load, lb

 d_m mean diameter of threaded hole, in. (\approx pitch diameter of threads)

 F_s material ultimate or yield shear stress

L length of thread engagement, in.

The ½ factor is empirical. If the threads were perfectly mated, this factor would be ½, since the total cylindrical shell area of the hole would be split equally between the bolt threads and the tapped hole threads. The ½ is used to allow for mismatch between threads.

Further information on required tapped hole lengths is given in reference 19.

Calculating Shank Diameter for "Number" Fastener

The shank diameter for a "number" fastener is calculated from

Diameter =
$$0.060 + 0.013 N$$

12 Margin of safety is defined as

where N is the number (4, 6, 8, 10, 12) of the fastener. For example, the shank diameter of a no. 8 fastener is

Diameter =
$$0.060 + 0.013(8) = 0.164$$
 in.

Fastener Groups in Bearing (Shear Loading)

Whenever possible, bolts in shear should have a higher shear strength than the bearing yield strength of the materials they go through. Since the bolts have some clearance and position tolerances in their respective holes, the sheet material must yield in bearing to allow the bolt pattern to load all of the bolts equally at a given location in the pattern. Note that the sloppier the hole locations, the more an individual bolt must carry before the load is distributed over the pattern.

Bolts and rivets should not be used together to carry a load, since the rivets are usually installed with an interference fit. Thus, the rivets will carry all of the load until the sheet or the rivets yield enough for the bolts to pick up some load. This policy also applies to bolts and dowel pins (or roll pins) in a pattern, since these pins also have interference fits.

Fastener Edge Distance and Spacing

Common design practice is to use a nominal edge distance of 2D from the fastener hole centerline, where D is the fastener diameter. The minimum edge distance should not be less than 1.5D. The nominal distance between fasteners is 4D, but the thickness of the materials being joined can be a significant factor. For thin materials, buckling between fasteners can be a problem. A wider spacing can be used on thicker sheets, as long as sealing of surfaces between fasteners is not a problem.

Approximate Bearing and Shear Allowables

In the absence of specific shear and bearing allowables for materials, the following approximations may be used:

Alloy and carbon steels: $F_{su} = 0.6 F_{tu}$

Stainless steels: $F_{su} = 0.55 F_{tu}$

where F_{su} is ultimate shear stress and F_{tu} is ultimate tensile stress. Since bearing stress allowables are empirical to begin with, the bearing allowable for any given metallic alloy may be approximated as follows:

$$F_{hu} = 1.5 F_{tu}$$

$$F_{by} = 1.5 F_{ty}$$

where F_{bu} is ultimate bearing stress, F_{by} is yield bearing stress, and F_{ty} is tensile yield stress.

Proper Fastener Geometry

Most military standard (MS) and national aerospace standard (NAS) fasteners have coded callouts that tell the diameter, grip length, drilling of the head or shank, and the material (where the fastener is available in more than one material). Rather than listing a group of definitions, it is easier to use the NAS 1003 to NAS 1020 (fig. 32) as an example to point out the following:

- (1) The last two digits give the fastener diameter in sixteenths of an inch.
- (2) The first dash number is the grip length in sixteenths of an inch.
- (3) The letters given with the dash number indicate the head and/or shank drilling.

In addition, an identifying letter or dash number is added to indicate the fastener material. However, this systematic practice is not rigidly followed in all MS and NAS fastener standards.

Shear Heads and Nuts

In the aerospace industry the general ground rule is to design such that fasteners are primarily in shear rather than tension. As a result, many boltheads and nuts are made about one-half as thick as normal to save weight. These bolts and nuts are referred to as shear bolts and shear nuts, and care must be used in never specifying them for tension applications. The torque table values must also be reduced to one-half for these bolts and nuts.

Use of Proper Grip Length

Standard design practice is to choose a grip length such that the threads are never in bearing (shear). Where an exact grip length is not available, the thickness of the washers used under the nut or bolthead can be varied enough to allow proper grip.

Bolthead and Screwhead Styles

Although the difference between bolts and screws is not clearly defined by industry, at least the head styles are fairly well defined. The only discrepancy found in figure 33 is that the plain head, with a square shoulder, is more commonly called a carriage bolthead. The angle of countersunk heads (flat) can vary from 60° to 120°, but the common values are 82° and 100°.

Counterfeit Fasteners

In the past two years a great deal of concern and publicity about counterfeit fasteners has surfaced. The counterfeit case with the most documentation is the deliberate marking of grade 8.2 boron bolts as grade 8 bolts.

Grade 8.2 bolts are a low-carbon (0.22 percent C) boron alloy steel that can be heat treated to the same room-temperature hardness as grade 8 medium-carbon (0.37 percent C) steel. However, the room- and elevated-temperature strengths of the grade 8.2 bolts drop drastically if they are exposed to temperatures above 500 °F. Grade 8 bolts can be used to 800 °F with little loss of room-temperature strength.

Other fasteners marked as Ms and NAS but not up to the respective Ms or NAS specification have shown up; however, documentation is not readily available. Since these fasteners are imported and have no manufacturer's identification mark on them, it is not possible to trace them back to the guilty manufacturer. U.S. Customs inspections have not been effective in intercepting counterfeit fasteners.

Another problem with fasteners has been the substitution of zinc coating for cadmium coating. If a dye is used with the zinc, the only way to detect the difference in coatings is by chemical testing.

Federal legislation to establish control of fastener materials from the material producer to the consumer is being formulated.

Bolthead Identification

Identifying an existing non-Ms, non-Nas, or non-Air Force-Navy bolt is usually a problem. Each manufacturer seems to have a different system. Frank Akstens of Fastener Technology International magazine (ref. 20) has compiled a good listing of several hundred "common" bolts. His entire compilation is enclosed as appendix A of this report. An international guide to bolt manufacturer's identification symbols has also been published by Fastener Technology International magazine.

Fastener Strength

Allowable strengths for many types of fasteners are given in MIL-HDBK-5 (ref. 18). Ultimate shear and tensile strengths of various threaded fasteners are given in appendix B of this report.

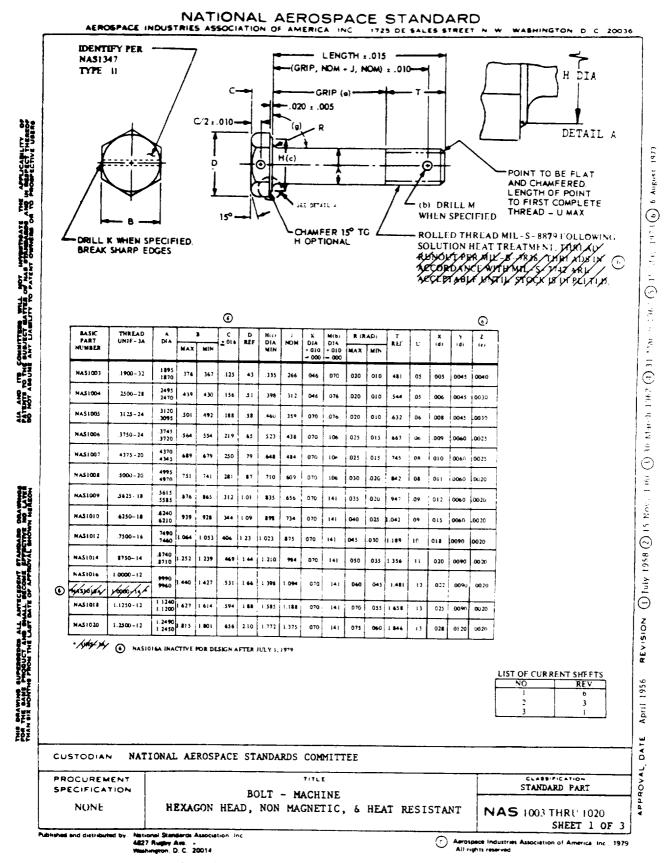


Figure 32.—National aerospace standard for proper fastener geometry.

Figure 32.—Continued.

National Standards Association Inc 4827 Rugby Ave Washington D C 20014

Published and distributed by

NAS 1003 THRU 1020

SHEET 2

NATIONAL AEROSPACE STANDARD AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA. INC.: 1725 DE SALES STREET DASH . OW 2.015 MAS1003 MAS1004 NAS1305 MAS1006 MAS1007 NAS1308 NAS1009 NAS1010 NAS1 12 NAS1 1 NAS1316 NAS1016 NAS1020 THE CHANGE OF THE SECOND AND ASSESSED TO SECOND SEC 16 / Jana REVISION DASH NO. INDICATES GRIP LENGTH IN .0625 INCREMENTS. INTERMEDIATE OR LONGER LENGTHS MAY BE ORDERED BY USE OF PROPER DASH NO. 1971 May DATE NAS 1003 THRU 1020 SHEET 3 National Standards Association Inc 4827 Rugby Ave Washington, D. C. 20014 C Aerospace Industries Association of America, Inc. 1979
All rights reserved

Figure 32.—Concluded.

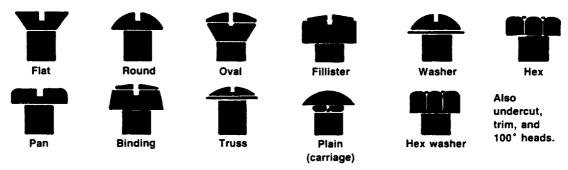


Figure 33.—Bolthead and screwhead styles.

Rivets and Lockbolts

Rivets

Rivets are relatively low-cost, permanently installed fasteners that are lighter weight than bolts. As a result, they are the most widely used fasteners in the aircraft manufacturing industry. They are faster to install than bolts and nuts, since they adapt well to automatic, high-speed installation tools. However, rivets should not be used in thick materials or in tensile applications, as their tensile strengths are quite low relative to their shear strengths. The longer the total grip length (the total thickness of sheets being joined), the more difficult it becomes to lock the rivet.

Riveted joints are neither airtight nor watertight unless special seals or coatings are used. Since rivets are permanently installed, they have to be removed by drilling them out, a laborious task.

General Rivet Types

The general types of rivets are solid, blind, tubular, and metal piercing (including split rivets). From a structural design aspect the most important rivets are the solid and blind rivets.

Solid rivets.—Most solid rivets are made of aluminum so that the shop head can be cold formed by bucking it with a pneumatic hammer. Thus, solid rivets must have cold-forming capability without cracking. A representative listing of solid rivets is given in table IX (ref. 21). Some other solid rivet materials are brass, SAE 1006 to SAE 1035, 1108 and 1109 steels, A286 stainless steel, and titanium.

Note that the rivets in table IX are covered by military standard specifications, which are readily available. Although most of the solid rivets listed in table IX have universal heads, there are other common head types, as shown in figure 34. However, because the "experts" do not necessarily agree on the names, other names have been added to the figure. Note also that the countersunk head angle can vary from 60° to 120° although 82° and 100° are the common angles.

TABLE IX.—ALUMINUM AND OTHER RIVET MATERIALS

[From ref. 21.]

Material	Rivet designation	Rivet heads available	Applications
2117-T4	AD	Universal (MS20470) 100° Flush (MS20426)	General use for most applications
2024-T4	DD	Universal (MS20470) 100° Flush (MS20426)	Use only as an alternative to 7050-T73 where higher strength is required
1100	A	Universal (MS20470) 100° Flush (MS20426)	Nonstructural
5056-H32	В	Universal (MS20470) 100° Flush (MS20426)	Joints containing magnesium
Monel (annealed)	М	Universal (MS20615) 100° Flush (MS20427)	Joining stainless steels, titanium, and Inconel
Copper (annealed)		100° Flush (MS20427)	Nonstructural
7050-T73	E	Universal (MS20470) 100° Flush (MS20426)	Use only where higher strength is required

The sharp edge of the countersunk head is also removed in some cases, as in the Briles¹³ BRFZ "fast" rivet (fig. 35), to increase the shear and fatigue strength while still maintaining a flush fit.

Blind rivets.—Blind rivets get their name from the fact that they can be completely installed from one side. They have the following significant advantages over solid rivets:

- (1) Only one operator is required for installation.
- (2) The installation tool is portable (comparable to an electric drill in size).

¹³Briles Rivet Corporation, Oceanside, California.

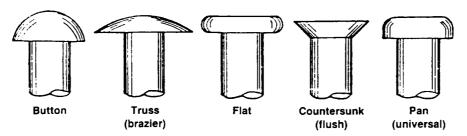


Figure 34.—United States standard rivet heads

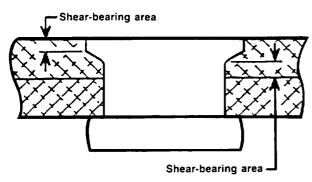


Figure 35.-BRFZ 'fast' rivet.

- (3) They can be used where only one side of the workpiece is accessible.
- (4) A given-length rivet can be used for a range of material thicknesses.
 - (5) Installation time is faster than with solid rivets.
 - (6) Clamping force is more uniform than with solid rivets.
 - (7) Less training is required for the operator.

Blind rivets are classified according to the methods used to install them:

- (1) Pull mandrel
- (2) Threaded stem
- (3) Drive pin

Specific types (brands) of blind rivets are covered in subsequent sections of this manual.

Pull-mandrel rivets: This rivet is installed with a tool that applies force to the rivet head while pulling a prenotched serrated mandrel through to expand the far side of the tubular rivet. When the proper load is reached, the mandrel breaks at the notch. A generic pull-mandrel rivet is shown in figure 36.

Threaded-stem rivets: The threaded-stem rivet (fig. 37(a)) has a threaded internal mandrel (stem) with the external portion machined flat on two sides for the tool to grip and rotate. The head is normally hexagonal to prevent rotation of the tubular body while the mandrel in being torqued and broken off.

Drive-pin rivets: This rivet has a drive pin that spreads the far side of the rivet to form a head, as shown in figure 38. Although drive-pin rivets can be installed quickly, they are

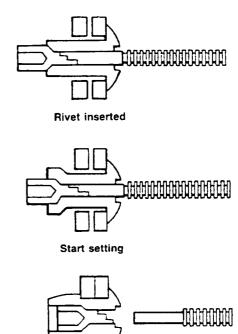
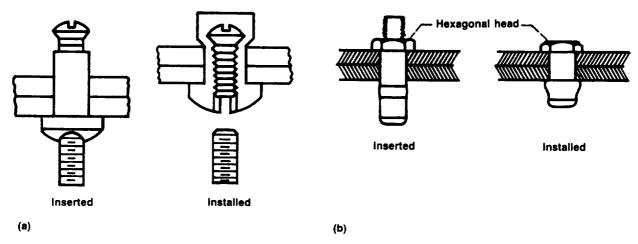


Figure 36.—Pull-mandrel rivet. (From ref. 5.)


usually not used in aerospace applications. They are used primarily for commercial sheet metal applications.

Tubular rivets.—Tubular rivets are partially hollow and come in a variety of configurations. The generic form has a manufactured head on one side and a hollow end that sticks through the pieces being joined. The hollow end is cold formed to a field head.

Since extensive cold forming is required on these rivets, they must be extremely ductile and are consequently made of low-strength materials. They are normally used for commercial applications rather than in the aerospace industry.

Some specific types of tubular rivets are

- (1) Compression
- (2) Semitubular
- (3) Full tubular

(a) One-piece body. (From ref. 5.)(b) Two-piece body. (From ref. 22.)

Figure 37.—Threaded-stem rivets.

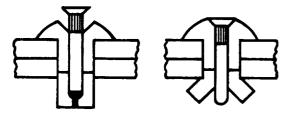


Figure 38.—Drive-pin rivet. (From ref. 5.)

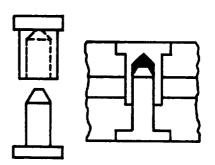


Figure 39.—Compression tubular rivet. (From ref. 5.)

Compression tubular rivets: A compression tubular rivet (fig. 39) consists of two parts that have an interference fit when driven together. These rivets are used commercially in soft materials and where a good appearance is required on both sides of the part.

Semitubular rivets: The semitubular rivet (fig. 40) has a hole in the field end (hole depth to 1.12 of shank diameter) such that the rivet approaches a solid rivet when the field head is formed.

Full tubular rivets: The full tubular rivet (fig. 41) has a deeper hole than the semitubular rivet. It is a weaker rivet than the semitubular rivet, but it can pierce softer materials such as plastic or fabric.

Metal-piercing rivets.—Metal piercing rivets (fig. 42) are similar to semitubular rivets, except that they have greater column strength. Part of the sandwich material is not drilled, and the rivet pierces all the way or most of the way through while mushrooming out to a locked position.

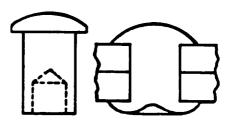


Figure 40.—Semitubular rivet. (From ref. 5.)

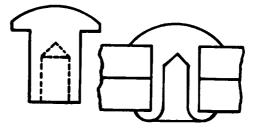


Figure 41.—Full tubular rivet. (From ref. 5.)

Figure 42.—Metal-piercing rivet. (From ref. 5.)

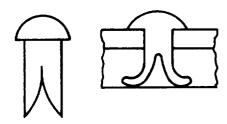


Figure 43.—Split (bifurcated) rivet. (From ref. 5.)

Split rivets.—Split (bifurcated) rivets (fig. 43) are the standard "home repair" rivets. They have sawed or split bodies with sharp ends to make their own holes through leather, fiber, plastic, or soft metals. They are not used in critical applications.

Specific Rivet Types

AD & DD solid rivets.—The most common solid rivets are the AD and DD aluminum rivets, as listed in table IX. These are the preferred rivets for joining aluminums and combinations of aluminum and steel. The "icebox" (DD) rivets can be used in higher-strength applications, but they must be kept around 0 °F until they are installed. The 7050–T73 aluminum rivets are an alternative to "icebox" rivets.

Since solid rivets are expanded to an interference fit, they should not be used in composites or fiber materials. They can cause delamination of the hole surfaces, leading to material failure.

Cherry Buck rivets.—The Cherry Buck rivet ¹⁴ is a hybrid consisting of a factory head and shank of 95-ksi-shear-strength titanium, with a shop end shank of ductile titanium/niobium, joined together by inertia welding (fig. 44). This combination allows a shop head to be formed by bucking, but the overall shear strength of the rivet approaches 95 ksi. The Cherry Buck rivet can be used to 600 °F.

Monel rivets.-Monel (67 percent nickel and 30 percent

⁽a)

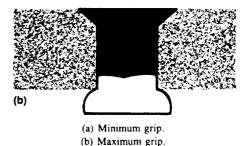
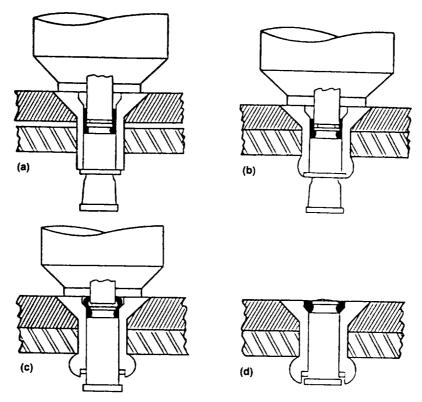


Figure 44.—Cherry Buck rivet.

copper) rivets are used for joining stainless steels, titanium, and Inconel. Monel is ductile enough to form a head without cracking but has higher strength ($F_{su} = 49 \text{ ksi}$) and temperature capabilities than aluminum.


Titanium/niobium rivets.—These titanium alloy rivets (per MIL-R-5674 and AMS4982) have a shear strength of 50 ksi but are still formable at room temperature. They generally do not need a coating for corrosion protection. The Cherry E-Z Buck is a titanium/niobium rivet.

Cherry rivets.—The generic Cherry rivet is a blind structural rivet with a locking collar for the stem installed as shown in figure 45. (Different head types are available.) Cherry rivets are available in both nominal and oversize diameters in the common (¼ through ¼ in.) sizes. The oversize rivets are used for repairs where a nominal-size rivet (solid or blind) has been drilled out or where the initial drilled hole is oversize. These rivets have shear strengths comparable to AD solid aluminum rivets. However, their usage is restricted in aircraft manufacturing by the guidelines of MS33522, which is included as appendix C. A typical list of available Cherry rivet materials is shown in table X.

Huck blind rivets.—Huck blind rivets¹⁵ are similar to Cherry rivets, except that they are available in higher strength material. These rivets are made with and without locking collars and with countersunk or protruding heads. Note also (in fig. 46) that the sleeve on the blind side is deformed differently on the Huck rivet than on the Cherry rivet.

¹⁴Townsend Company, Cherry River Division, Santa Ana, California.

¹⁵ Huck Manufacturing Company, Long Beach, California.

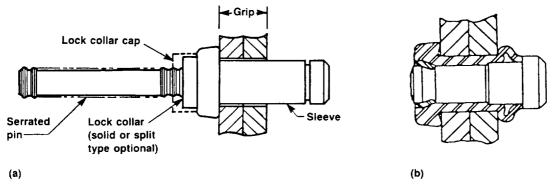
- (a) Insert Cherrymax rivet into prepared hole. Place pulling head over rivet stem and apply firm, steady pressure to seat head. Actuate tool.
- (b) Stem pulls into rivet sleeve and forms large bulbed blind head; seats rivet head and clamps sheets tightly together. Shank expansion begins.
- (c) "Safe-lock" locking collar moves into rivet sleeve recess. Formation of blind head is completed. Shear-ring has sheared from cone, thereby accommodating a minimum of 1/16 in. in structure thickness variation.
- (d) Driving anvil forms "safe-lock" collar into head recess, locking stem and sleeve securely together. Continued pulling fractures stem, providing flush, burr-free, inspectable installation.

Figure 45.—Cherry rivet installation.

TABLE X.—CHERRY RIVET MATERIALS

Materials		Ultimate	Maximum
Sleeve	Stem	shear strength, psi	remperature, °F
5055 Aluminum	Alloy steel	50 000	250
5056 Aluminum	CRES	50 000	250
Monel	CRES	55 000	900
Inco 600	Inco X750	75 000	1400

Pop rivets.—Pop rivets ¹⁶ are familiar to most of the public for home repairs. However, they are not recommended for critical structural applications. The stem sometimes falls out of the sleeve after the rivet is installed, and the symmetry of the blind (formed) head leaves much to be desired. Although the pop rivet shown in figure 47 is the most common type, USM makes a closed-end rivet and three different head styles.


Lockbolts

In general, a lockbolt is a nonexpanding, high-strength fastener that has either a swaged collar or a type of threaded collar to lock it in place. It is installed in a standard drilled hole with a snug fit but normally not an interference fit. A lockbolt is similar to an ordinary rivet in that the locking collar or nut is weak in tension loading and is difficult to remove once installed.

Some of the lockbolts are similar to blind rivets and can be completely installed from one side. Others are fed into the workpiece with the manufactured head on the far side. The installation is then completed from the near side with a gun similar to blind rivet guns. Lockbolts are available with either countersunk or protruding heads.

Since it is difficult to determine whether a lockbolt is installed properly, they should be used only where it is not possible to install a bolt and nut of comparable strength. However, they are much faster to install than standard bolts and nuts.

¹⁶USM Corporation, Pop Rivet Division, Shelton, Connecticut.

(a) Protruding head, BP-T (MS90354) or BP-EU (MS21141). (b) Installed fastener.

Figure 46.—Huck blind rivets.

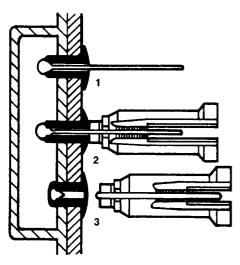


Figure 47.—Pop rivet installation.

Jo-Bolts

Jo-bolts are similar to blind rivets in appearance and installation. The locking collar (sleeve) is expanded to form a shop head by rotating the threaded stem with a gun. The threaded stem is notched and breaks off when the proper torque is reached. A typical Jo-bolt installation is shown in figure 48.

Hi-Lok

The Hi-Lok¹⁷ lockbolt has a countersunk or protruding manufactured head and threads like a bolt. It is fed through the hole from the far side. The installation gun prevents shank rotation with a hexagonal key while the nut is installed (as shown in fig. 49). The nut (collar) hexagonal end is notched to break off at the desired torque. Hi-Lok lockbolts are available in high-strength carbon steel (to 156-ksi shear), stainless steel (to 132-ksi shear), and titanium (to 95-ksi shear).

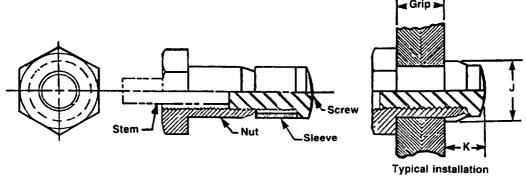
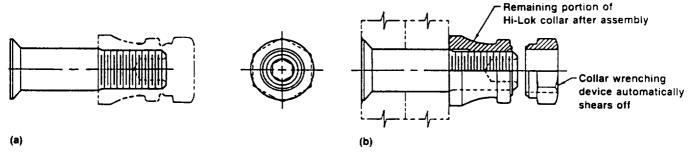
Huckbolts

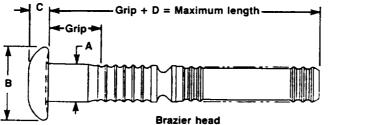
Huckbolts¹⁵ are similar to Hi-Loks except that the stem is usually serrated rather than threaded. The collar is swaged on the stem. Then the stem is broken at the notch as shown in figure 50. Huckbolts and their collars are available in carbon steel, aluminum, and stainless steel with various strengths, as listed in the Huck catalog.

Taper-Lok

Taper-Lok¹⁸ is a high-strength threaded fastener that is

¹⁸SPS Technologies, Jenkintown, Pennsylvania.


Figure 48.—Jo-bolt. (From ref. 21.)

¹⁷Hi-Shear Corporation, Torrance, California.

(a) Hi-Lok pin.
(b) Hi-Lok pin and collar after assembly

Figure 49.—Hi-Lok installation.

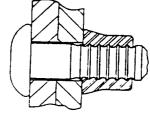
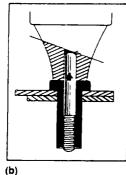


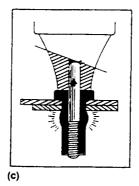
Figure 50.—Installed Huckbolt fastener.

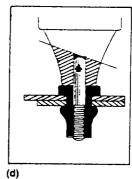


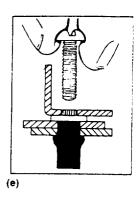
Figure 51.—Taper-Lok installation.

installed with an interference fit. Most of the shank is tapered on a 1.19° angle. The lubricated lockbolt is driven into a drilled and reamed hole. The interference fit allows the nut (tension or shear nut) to be installed and torqued to the required value without holding the lockbolt to prevent rotation (see fig. 51). The nuts are locknuts with captive washers. When a tension nut is installed, this fastener can take as much tension load as a bolt of the same size and material. Consequently, Taper-Loks are used in critical applications where cyclic loading is a problem. Taper-Lok lockbolts are available in high-strength alloy steel, H-11 tool steel, and several stainless steels, as well as titanium.


Rivnuts


A Rivnut¹⁹ is a tubular rivet with internal threads that is deformed in place to become a blind nutplate (fig. 52). Rivnuts are available with protruding, countersunk, and fillister heads. They are also available with closed ends, sealed heads, ribbed shanks, hexagonal shanks, and ribbed heads. Since the unthreaded tubular portion of the rivet must deform, the material must be ductile. Consequently, the Rivnut materials are fairly low strength, as shown in table XI.


¹⁹B.F. Goodrich, Engineered Systems Division, Akron, Ohio.


ORIGINAL PAGE IS OF POOR QUALITY

- (a) Step 1-Rivnut fastener is threaded onto mandrel of installation tool.
- (b) Step 2-Rivnut fastener, on tool mandrel, is inserted into hole drilled for installation.
- (c) Step 3—Mandrel retracts and pulls threaded portion of Rivnut fastener shank toward blind side of work, forming bulge in unthreaded shank area.
 - (d) Step 4—Rivnut fastener is clinched securely in place; mandrel is unthreaded, leaving internal Rivnut threads intact.
- (e) Blind nutplate—Properly installed Rivnut fastener makes excellent blind nutplate for simple screw attachments; countersunk Rivnut fasteners can be used for smooth surface installation.

Figure 52.—Rivnut installation.

TABLE XI.—STANDARD RIVNUT FASTENER MATERIALS AND FINISHES

Material	Туре	Standard finish	Minimum ultimate tensile strength, psi
Aluminum	6053-T4	Anodize—Alumilite 205 will meet specifications: MIL-A-8625 (ASG)	28 000
Steel	C-1108* C-1110*	Cadmium plate—0.0002 in. minimum thickness per QQ-P-416b, class 3, type I	45 000
	4037	Cadmium plate—0.0002 in. minimum thickness per QQ-P-416b, class 2, type II	⁶ 55 000 ⁶ 85 000
Stainless steel	430	Pickled and passivated per QQ-P-35, type II	67 000
	305 ^d Carpenter 10 ^d	None—bright as machined	80 000
Brass	Alloy 260	None-bright as machined	50 000

^aC-1108 and C-1110 steel may be used interchangeably.

Hi-Shear Rivet

Hi-Shear¹⁷ rivets consist of a high-strength carbon steel, stainless steel, aluminum, or titanium rivet (pin) with a neckeddown shop head, as shown in figure 53. The collar (2024 aluminum or Monel) is swaged on to give a finished head that

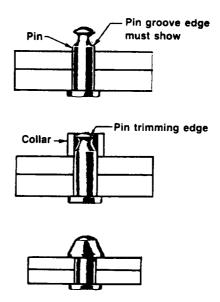
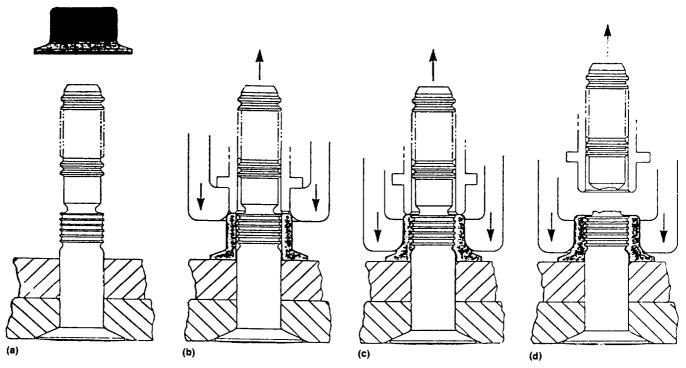


Figure 53.-Hi-Shear installation.

can be visually inspected for proper form. This rivet should be used for shear applications only, as the collar has negligible tensile strength.

Although this rivet has been partially superseded by various lockbolts, it is still being used in aircraft and aerospace applications.

Lightweight Grooved Proportioned Lockbolt


The lightweight grooved proportioned lockbolt (LGPL)²⁰ is made especially for composite materials. It has both an oversize head and an oversize collar to lessen contact stresses

bNo. 4 and No. 6 thread sizes

CNo. 8-1/2-in. thread size.

d305 and Carpenter No. 10 stainless steel may be used interchangeably

²⁰Monogram Aerospace Fasteners, Los Angeles, California.

(a) Flanged collar is placed over lightweight pin.

(b) Installation tool grips and pulls pin, drawing sheets tightly together and removing sheet gap.

(c) As pull on pin increases, tool anvil swages flanged collar into locking grooves and forms permanent vibration-resistant lock.

(d) Pull on pin continues until pin fractures at breakneck groove and is then ejected. Tool anvil disengages swaged collar.

Figure 54.—LGPL installation.

on the composite material during both installation and service life. The shank is high-strength (95-ksi shear) titanium and the collar is 2024 aluminum. It is installed with a lockbolt tool as shown in figure 54.

General Guidelines for Selecting Rivets and Lockbolts

A number of standard documents are available for the selection, installation, and drawing callout of rivets and lockbolts as follows:

- (1) Rivet installations are covered by MIL-STD-403. This specification covers pilot holes, deburring, countersinking, dimpling, and the application of zinc chromate paint between dissimilar materials. Other specifications for corrosion prevention of drilled or countersunk surfaces are covered in MIL-P-116 and MIL-STD-171.
- (2) Design and selection requirements for blind *structural* rivets are given in MS33522 (appendix C).

- (3) Design and selection requirements for blind nonstructural rivets are given in MS33557.
- (4) A wealth of information on allowable rivet strengths in various materials and thicknesses is given in chapter 8 of MIL-HDBK-5 (ref. 18).
 - (5) Testing of fasteners is covered by MIL-STD-1312.
 - (6) Lockwiring is done per MS33540.

Note that the nominal rivet spacing for a rivet pattern is an edge distance of 2D and a linear spacing of 4D, where D is the rivet diameter. However, the 4D spacing can be increased if sealing between rivets or interrivet buckling is not a problem.

Solid rivets (expanded during installation) should not be used in composite materials, as they can overstress the hole and cause delamination of the material.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, June 30, 1989

ORIGINAL PAGE IS OF POOR QUALITY

References

- Sliney, H.E.: High Temperature Solid Lubricants—1. Layer Lattice Compounds and Graphite. Mech. Eng., vol. 96, no. 2, Feb. 1974, pp. 18-22.
- Prevention of Material Deterioration: Corrosion Control Course—U.S. Army Logistics Engineering Directorate—Nov. 1970.
- ASM Metals Handbook. 9th ed., Vols. 1, 2, 3, 5, 13, American Society for Metals, Metals Park, OH.
- 4. SAE Handbook. SAE, 1968.
- 1987 Fastening, Joining & Assembly Reference Issue. Mach. Des., vol. 59, no. 27, Nov. 19, 1987.
- Unified Inch Screw Threads (UN and UNR Thread Form). ANSI B1.1-1982. American National Standards Institute, New York, NY, 1982.
- Screw Thread Standards for Federal Services, Part 1—Unified UNJ Unified Miniature Screw Threads. National Bureau of Standards Handbook, NBS-H28-1969-PT-1, 1969.
- Fastener Standards. 5th ed., Industrial Fasteners Institute, Cleveland, OH, 1970.
- Bickford, J.H.: An Introduction to the Design and Behavior of Bolted Joints. Dekker, 1981.

- Juvinall, R.: Engineering Considerations of Stress, Strain, and Strength. McGraw-Hill, 1967.
- 11. Donald, E.P.: A Practical Guide to Bolt Analysis. Mach. Des., vol. 53, Apr. 9, 1981, pp. 225-231.
- Baumeister, et al.: Mark's Standard Handbook for Mechanical Engineers.
 8th ed., McGraw-Hill, 1978.
- 13. Seely, F.B.: Resistance of Materials. 3rd ed., Wiley & Sons, 1947.
- Shigley, J.E.; and Mitchell, L.D.: Mechanical Engineering Design. 4th ed., McGraw-Hill, 1983.
- 15. Machine Design, Nov. 19, 1981.
- 16. Peery, D.J.: Aircraft Structures. McGraw-Hill, 1950.
- 17. Grinter, L.: Theory of Modern Steel Structures. Vol. I, Macmillan Co., 1955.
- Metallic Materials and Elements for Aerospace Vehicle Structures. MIL-HDBK-5E, Department of Defense, June 1987.
- Faupel, J.H.; and Fisher, F.E.: Engineering Design, 2nd ed., Wiley & Sons, 1981.
- Fastener Technology International Magazine, Solon, Ohio, Oct. 1985 through Feb. 1987 Editions.
- Design Handbook, Section 16. McDonnell Douglas Astronautics Co., Huntington Beach, CA.
- Bruhn, E.F.: Analysis & Design of Flight Vehicle Structures. Tri-State Offset Co., Cincinnati, 1965.

Appendix A Bolthead Marking and Design Data

[From ref. 20]

ASTM markings

ASTM

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

Grade and material identification markings required by ASTM specifications

								Mechanical properties	propert	es		
				le mfor's	Nomina	Boi	Bolts, screws, studs	studs	Nuts	Harc	Hardness	
Grade	ASTM	Fastener		Ol Symbol	size	Proof	Yield strength	Tensile strength	Proof		1	Remarks
mark	number	description	Material	req'd?	(iucu)	(bsi)	(min psi)	(min psi)	(isd)	Brineii	ROCKWell	or roomers
None req'd	A31. Grade A	Boiler rivets	Carbon steet	No	%1 nıų⊥	1	23,000	45,000	1	I	I	1
None req'd	A31, Grade B	Boiler rivets	Carbon steel	No	Thru 1½		29,000	58,000	1	I	i	in the second
None req'd	A65. Grade 1	Track spikes	Carbon steel, copper not specified	Yes		1	0.5X tensile strength	55,000	l	1	1	Marking on top of head
ກວ	A65. Grade 1	Track spikes	Carbon steel, copper specified	Yes		1	0.5X tensile strength	55,000	1	I	1	Marking on top of head.
H C	A65. Grade 2	Track spikes	Carbon steel, copper not specified	Yes		1	0.5X tensile strength	70,000		1		Marking on top of head.
HC and CU	A65. Grade 2	Track spikes	Carbon steel, copper specified	Yes		ı	0.5X tensile strength	70,000	I		I	Marking on top of head
None req'd	A66	Screw spikes	Carbon steel	Yes		_	0.5X tensile strength	000'09	1		-	Marking on spike head.
None reg'd	A183. Grade 1	Track bolts	Low carbon steel, untreated	Yes	%1 - %	1	*****	25,000	ļ	1	1	Marking on top of head, raised or depressed
See "Remarks"	A183. Grade 2	Track bolls	Carbon steel, heat-Ireated	Yes	% - 1%	I	000'08	110,000	ļ	1	I	Marking on top of head, raised or depressed A symbol is required to indicate boll is heat-treated.
None req'd	A183. Grade 1	Track nuts	Low carbon steel	No	%1 - %	-			1	I	1	_
None reg'd	A183, Grade 2	Track nuts	Medium carbon steel	No	%1 - %	1	1	1	1	1	1	
B5	A193	Bolts, screws, and studs for high temperature service	AISI 501	Yes	7 - 4		80,000	100.000	1	1	1	∢
98	A193	Bolts, screws, and studs for high temperature service	AISI 410	Yes	7 4	-	85,000	110,000			1	٧

or footnotes Remarks ⋖ **«** « ∢ **4 4** ⋖ ⋖ ⋖ ⋖ ⋖ ⋖ ۹ 4 896⁰ тах 896⁰ max Rockwell В96^р max 896⁰ max B96^D max В96⁰ так C26 may 896^ն max B99 max (B) Hardness 1 1 1 1 ĺ Brinell 223⁰ max 223^D max 223^D Max 223⁰ max 223^D max 235 max (B) 223⁰ max 223^U max 11 1 Mechanical properties Nuts Proof load (psi) į 1 (min psi) 110,000 100,000 90,000 115,000 100,000 100,000 Tensile strength 75,000 75,000 75,000 75,000 75,000 75,000 75,000 Bolts, screws, studs strength (min psi) 105.000 95.000 70.000 75,000 80,000 105,000 95,000 85,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 Yield Proof load (psi) 1 1 1 1 Nominal 2.2.4 Over 2.2.4 Over and larger % - 2% Over 2% - 4 Over ,, and larger range (inch) ...2. % and larger % and larger ;, and larger % and larger Is mfgr's 1D symbol req'd? Yes AISI 4140, 4142. 4145, 4140H, 4142H, 4145H AISI 4140, 4142, 4145, 4140H, 4142H. vanadium alloy steel restricted carbon). AISI 304N (with restricted carbon). restricted carbon). motybdenum, and AISI 304, carbide solution treated AISI 316, carbide solution treated AISI 347, carbide solution treated AISI 321, carbide solution treated carbide solution treated carbide solution AISI 316N (with carbide solution AISI 305 (with Material Chromum, AISI 410 treated 4145H Bolts, screws, and studs for high temperature Botts, screws, and studs for high temperature Bolts, screws, and studs for high temperature Bolts, screws, and studs for high or low respectively—Class 1 (C) Bolts, screws, and studs respectively---Class 1 (C) Bolts, screws, and studs Bolts, screws, and studs Bolts, screws, and studs Bolts, screws, and studs Temperature service, respectively— Class I (C) Bolts, screws, and studs respectively-Class I (C) Bolts, screws, and studs respectively—Class I (C) respectively—Class I (C) tor high temperature temperature service. temperature service. temperature service. lemperature service. description temperature service. temperature service. Fastener for high or low service ASTM spec number A193. A320 A193. A320 A193. A320 A193. A320 A193. A320 A193 A193 A193 A193. A320 A193. A320 BBMLN BBLN Grade 10 B7M mark 816 880 B8M В8Р B8T **B6X** 87 88

Footnotes are grouped on the last page of this Part 1 series,

ORIGINAL PAGE IS OF POOR QUALITY

Hardness rinell Rockwell 192									Mechanical properties	properti	es		
ASTIM Transport Transpor					ls mfar's	Nominat	Bol		studs	Nuts		Iness	
A193 Bules sciences and study Al51 Wal Cardiade Yes 1, and 200.00 75.000 192 194 max A280 Integration teacher of transport teacher Integration teacher	Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
A193 Boils screws, and study Al51347 cathade Yes 1, and 30.000 75.000 192 B90 max Copperingly—Class 1A	ВВА	A193. A320	Botts screws and studs for high or low temperature service respectively - Class 1A (C)	ATSI 304 carbide solution freated in brinshed condition	Yes	, and larger	1	30 000	75 000	1	192 Max	Bake max	,t
A1936 Bolts screece, and study Solid form treated in the solid f	BBCA	A193. A320	Bolts, screws, and studs for high or low temperature service, respectively.—Class 1A (C)	AISI 347, carbide solution freated in finished condition	Yes	, and larger		30,000	75,000	1	192 max	B90 max	ď
A193. Grows, and study ASS and study <th< td=""><td>ВВМА</td><td>A193. A320</td><td>Bolls, screws, and studs for high or low temperature service, respectively. Class 1A (C)</td><td>AISI 316, carbide solution treated in fritshed condition</td><td>Yes</td><td>¼ and larger</td><td>1</td><td>30.000</td><td>75,000</td><td>i</td><td>192 Max</td><td>В90 max</td><td>⋖</td></th<>	ВВМА	A193. A320	Bolls, screws, and studs for high or low temperature service, respectively. Class 1A (C)	AISI 316, carbide solution treated in fritshed condition	Yes	¼ and larger	1	30.000	75,000	i	192 Max	В90 max	⋖
A193, Boils, screws, and shads AISI 321, carbide Yes 1, and 30,000 75,000 192 B90 max Emperature service, finished condition 1	ВВРА	A193. A320	Bolls, screws, and studs for high or low temperature service, respectively—Class 1A (C)	AIST 305 (with restricted carbon), carbide solution treated in finished condition	Yes	½ and larger		30,000	75.000		192 max	В90 тах	⋖
A 193. Bolts, screws, and study A 181 304N (with a solution respectively—Class I A condition respectively—Class I A treated in linished (C) A 193. Bolts, screws, and study A 181 316N, carbide Yes 1, and	ВВТА	A193. A320	Bolts, screws, and studs for high or low lemperature service, respectively—Class 1A (C)	AISL321, carbide solution freated in finished condition	Yes	l, and larger		30,000	75,000	ı	192 max	В90 тах	⋖
A193, Bolts, screws, and study AISI 316N (with Present of Present Pres	BBLNA	A193. A320	Bolts, screws, and studs for high or low temperature service, respectively—Class IA (C)	AISI 304N (with restricted carbon) carbide solution treated in finished condition	Yes	, and larger		30,000	75,000	1	192 max	B90 max	ح
A193 Boths, screws, and shuds AISI 30AN, carbide Yes 1, and surve.	BBMLNA	A193, A320	Bolts, screws, and studs for high or tow temperature service, respectively—Class 1A (C)	AISI 316N (with restricted carbon), carbide solution treated in finished condition	Yes	½ and larger	1	30,000	75,000	1	192 max	В90 max	A
A 193 Bolts, screws, and studs AISI 316N, carbide Yes 1, and — 30,000 75,000 — 192 B90 max for high temperature solution treated in service. Class 1A Inistred condition to high temperature solution treated service, Class 18 solution treated service, Class 18 (1)	BBNA	A193	Botts, screws, and studs for high temperature service, Class 1A	AISt 304N, carbide solution treated in finished condition	Yes	pue '	;	30'000	75 000	i	192 Max	B90 max	А
A193 Bolts, screws, and Studs AIST 304N, carbide Yes ', and — 35,000 BD ono 223 B9b max for high temperature solution treated larger service, Class 1B (D)	BBMNA	A193	Bolts, screws, and studs for high temperature service. Class 1A	AISI 316N, carbide solution freated in fruished condition	Yes	!, and larger		30,000	75,000	į	192 Max	B90 max	Ą
	BBN	A193	Bolts, screws, and studs for high temperature service, Class 18	AISI 304N, carbide solution freated	٨٤٠	', and larger	F	35,000	80 000		223 max (0)	В96 max (D)	∢

								Mechanical properties	l proper	ies		
				is mfgr's	Nominal	Bol	Bolts, screws,	studs	Nuts	1	Hardness	
Grade ID mark	ASTM spec number	Fastener description	Materiał	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
BBMN	A193	Bolts, screws, and studs for high temperature service, Class 1B	AISt 316N, carbide solution freated	Yes	% and larger	1	35,000	80,000	'	223 max (D)	896 max (D)	V
BBR	A193	Bolts, screws, and studs for high temperature service, Class 1C	UNS 20910 (XM19), carbide solution treated	Yes	% and larger		95,000	100,000	1	271 max	С28 тах	A
BBRA	A193	Bolts, screws, and studs for high temperature service, Class 1C	UNS 20910 (XM19), carbide solution treated in finished condition	Yes	% and larger	1	55,000	100,000		27.1 max	С28 тах	∢
BBS	A193	Bolts, screws, and studs for high temperature service, Class 1C	S21800, carbide solution freated	Yes	% and larger		20,000	95.000		271 max	C28 max	∢
B8SA	A193	Bolts, screws, and studs for high temperature service, Class 1C	S21800, carbide solution treated in finished condition	Yes	½ and larger	İ	20,000	95,000		271 max	С28 тах	A
88	A193, A320	Bolts, screws, and studs for high or low temperature service,	AISI 304, carbide solution treated & strain hardened	Yes	% - % Over	l	100,000	125,000 115,000	1 1	321 max 321	C35 max C35 max	4 4
		respectively—Class 2 (C)			% - 1 Over 1 - 1% Over 1% - 1%	1 1	65,000	105,000		max 321 max 321 max	С35 тах С35 тах	4 4
) 경 경	A193.	Bolls, screws, and studs for high or low temperature service, respectively—Class 2 (C)	AISI 347 carbide solution freated & strain hardened	Yes	% - % Over % - 1 Over 1 - 1% Over 1% - 1%	1 1 1	100,000 80,000 65,000 50,000	125,000 115,000 105,000		321 max 321 max 321 max 321 max	C35 max C35 max C35 max C35 max	< < < <
98 98	A320	Bolls, screws, and sluds for high or low lemperalure service, respectively—Class 2 (C)	AISI 305 (with restricted carbon), carbide solution treated & strain hardened	Yes	% - % - % - 1 Over 1 - 1% Over Over 1 - 1% Over 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		100,000 80,000 65,000	125,000 115,000 105,000		321 max 321 max 321 max 321	C35 max C35 max C35 max C35 max	< < < <
188	A193.	Bolls, screws, and studs for high or low temperature service, respectively—Class 2 (C)	AISI 321, carbide solution treated & strain hardened	Yes	00er 8-1 00er 1-18 00er 12-18		100,060 80,000 65,000 50,000	125,600 115,000 105,000		321 max 321 max 321 max	C35 max C35 max C35 max C35 max	< < < <

ORIGINAL PAGE IS OF POOR QUALITY

								Mechanical properties	I properti	es		
						Bolt	Bolts, screws,	studs	Nuts		Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	Is mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
88 88 88	A193	Bolts, screws, and studs	AISI 304N, carbide	Yes	% - %	1	100.000	125.000	ļ	321	C35 max	∢
		service, Class 2	strain hardened		Over	١	80,000	115,000	İ	321	C35 max	∢
					over	1	65,000	105,000	1	321	С35 тах	∢
					0ver 1% - 1%	1	20,000	100,000	1	тах 321 мах	C35 max	∢
BBM	A193, A320	Bolts, screws, and studs for high or low	AISI 316, carbide solution treated &	Yes	% - %		95,000	110,000		321	C35 max	4
		temperature service, respectively—Class 2 (C)	strain hardened		Over	1	80,000	100,000	1	321	C35 max	∢
					0ver	1	65,000	95,000	I	321	C35 max	∢
					Over 1% - 1%	l	50,000	90,000	١	321 321 max	C35 max	∢
BBMN	A193	Bolts, screws, and studs for high temperature	AISI 316N, carbide solution treated &	Yes	7 7.		95,000	110,000	1	321	С35 тах	<
		service, Class 2	strain hardened	-	Over	1	80,000	100,000	I	321	C35 max	∢
					Over	1	65,000	95,000	i	321	С35 тах	∢
					Over 1% - 1%		50,000	000'06	I	max 321 max	С35 тах	∢
-	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon steel	Yes	% and targer			1	130,000 120,000	121 min	B70 min	j
18	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel	Yes	% and larger	1	1	1	130,000 120,000	121 min	B70 min	
2	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon steel	Yes	% and larger	1	1		150,000	159/352	B84 min	
28	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel	Yes	% and larger	1	1		150,000 135,000	159/352	B84 min	
2Н	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon steel, heat treated	Yes	% and larger				175,000 150,000	248/352	C24/C38	
2HB	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel, heat treated	Yes	% and larger	1	j -		175,000 150,000	248/352	C24/C38	E
2H W	A194	Hot or cold torged nuts for high pressure & high temperature service	Carbon steel, heat treated	Yes	% and larger				150,000 135,000	159/237	C22 max	i

								Machanic	Mechanical proportion			
						Bo	Bolts, screws, studs	studs	Nuts		Hardness	
Grade 1D mark	ASTM spec number	Fastener description	Material	Is mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psl)	Tensile strength (min psi)	Proof load (psi) hvy hex	Brinell	Rockwell	Remarks or footnotes
2HMB	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel, heat treated	Yes	% and larger	1	-	ř.	150 000	159/237	C22 max	ŧ
က	A1.94	Hot or cold forged nuts for high pressure & high temperature service	AISI 501, heat treated	Yes	, and larger			;	175,000 150,000	248/352	C24/C38	1
38	A194	Nuts machined from bars for high pressure & high lemperature service	AISI 501, heat freated	Yes	', and larger	1	,		175,000 150,000	248/352	C24/C38	E .
٩	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon, molybdenum, heat treated	Yes	/, and larger	i		-	175,000 150,000	248/352	C24/C38	
48	A194	Nuts machined from bars for high pressure & high temperature service	Carbon, molybdenum, heat treated	Yes	½ and larger	İ	i	-	175,000 150,000	248/352	C24/C38	ŭ.
9	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 410, heat treated	Yes	% and larger	1		,	150,000	228/271	C20/C28	
68	A194	Nuts machined from bars for high pressure & high temperature service	AISI 410, heat treated	Yes	½ and larger		i		150,000 135,000	228/271	C20/C28	لنا
6F	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 416 with sulfur or 416Se with selenium, heat treated	Yes	', and larger	!	İ	:	150,000	228/271	C20/C28	
6FB	A194	Nuts machined from bars for high pressure & high lemperature service	AISI 416 with sulfur or 416Se with selenium, heat treated	Yes	and larger		1		150,000 135,000	228/271	C20/C28	T.
7	A194	Hot or cold forged ruits for high pressure & high temperature service	AIST 4140/4142/4145, 4140H, 4142H, 4145H, heat treated	Yes	', and larger	1	1		175,000 150,000	248/352	C24/C38	
78	A194	Nuts machined from bars for high pressure & high temperature service	AISI 4140/4142/4145, 4140H, 4142H, 4145H, heat freated	Yes	', and larger	İ	:	i	175,000 150,000	248/352	C24/C38	E
M/	A194	Hot or cold lorged huts for high pressure & high lemperature service	AISI 4140/4142/4145, 4140H, 4142H, 4145H, heat treated	Yes), and larger	ļ!			150 000	159/237	C22 max	;
7MB	A194	Nuts machined from bars for high pressure & high temperature service	ABI 4140/4142/4145, 4140H 4142H 4145H beat freated	Yes	: and larger		i		150,000 135,000	159/237	C22 max	L
&	A194	Hot or cold forged hats for high pressure § high femperature service.	AISL304	Yes	", and larger	1	i	i	80,000 75,000	126/300	860/8106	
								-ootnotes	are groupe	ed on the	last page of th	Footnotes are grouped on the last page of this Part 1 series.

								Mechanic	Mechanical properties	es		
						Bol	Bolts, screws, studs	studs	Nuts	Hari	Hardness	
Grade. ID	ASTM	Fastener		Is mfgr's ID symbol	Nominal size range	Proof	Yield strength	Tensile strength	Proof load (psi) hvy hex			Remarks
mark	number	description	Material	req'd?	(inch)	(psi)	(min psi)	(min psi)	hex	Brinell	Rockwell	or footnotes
88	A194	Nuts machined from bars for high pressure & high temperature service	AISI 304	Yes	¹, and larger	i	-	1	80,000 75,000	126/300	B60/8105	
8A	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 304, carbide solution treated	Yes	, and larger	1	ı	,	80.000 75.000	126/192	Be0/B90	
၁	A194	Hot or cold forged muts for high pressure & high temperature service	AISL347	Yes	ragie!	ï	ı	:	80.000 75.000	126/300	860/8105	÷
8CB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 347	Yes	larger		!	!	80,000 75,000	126/300	860/8105	:
8CA	A19.1	Hot or cold forged or machined from bars for high pressure & high temperature service	AISL347, carbide solution treated	Yes	, and larger		!	1	80,000 75,000	126/192	B60:890	!
8W	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 316	Yes	and Jarger	i			80,000 75,000	126/300	B60/B105	:
8MB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 316	Yes), and larger	-	1	-	80,000 75,000	126/300	B60/B105	:
вма	A194	Hot or cold forged or machined from bars for high pressure & high temperature service.	AISI 316, carbide solution treated	Yes	½ and larger	1	}	1	80,000 75,000	126/192	060/1830	
8T	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 321	Yes	³, and larger	1	. 1	-	80,000 75,000	126/300	B60/B105	
8TB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 321	Yes	larger	İ	I	i	80.000 75.000	126/300	B60/B105	,
81A	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 321, carbide solution treated	Yes	T and larger		1		80 000 75,000	126/192	B60/B90	1
8F	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 303 with sulfur or 303Se with selenium	Yes	Jand larger	ļ	. (ř	80,000 75,000	126/300	B60/B105	
8FB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 303 with sulfur or 303Se with selenium	Yes	¼ and larger	1			80,000	126/300	860/8105	
								FOOIDOIES	sare group	on uo pac	e last bade or	Footnotes are grouped on the last page of this Part 1 series.

A TO CHAMPION

								Mechanical properties	propertie	s		
						Bol	Bolts, screws, studs	studs	Nuts		Hardness	
Grade 1D mark	ASTM spec number	Fastener description	Material	Is mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl) hvy hex	Brinell	Rockwell	Remarks or footnotes
8FA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 303 with sulfur or 303Se with selenium, carbide solution treated	Yes	% and larger		1	ļ	80,000 75,000	126/192	B60/B90	-
8 b	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 305 (with restricted carbon)	Yes	% and larger	i	1		80.000 75.000	126/300	B60/B105	1
898	A194	Nuts machined from bars for high pressure & high temperature service	AISI 305 (with restricted carbon)	Yes	½ and larger		i	1	80,000 75,000	126/300	B60/B105	1
8PA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 305 (with restricted carbon), carbide solution treated	Yes	% and larger	1		-	80,000 75,000	126/192	B60/B90	İ
2	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 304N	Yes	% and larger	1		1	80,000 75,000	126/300	B60/B105	
8 8 8 8	A194	Nuts machined from bars for high pressure & high temperature service	AISI 304N	Yes	% and larger			ı	80,000 75,000	126/300	B60/B105	
8NA	A194	Hot or cold torged or machined from bars for high pressure & high temperature service	AISI 304N, carbide solution treated	Yes	% and larger		i		80,000 75,000	126/192	B60/B90	1
N N N	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 316N	Yes	% and larger	1			80,000 75,000	126/300	B60/B105	1
8WN8	A194	Nuts machined from bars for high pressure & high temperature service	AISI 316N	Yes	% and larger	1	1		80,000 75,000	126/300	B60/B105	ļ
BMNA	A194	Hot or cold forged or machined from bars for high pressure & high femperature service	AISI 316N, carbide solution treated	Yes	and larger	i		!	80,000 75,000	126/192	B60/B90	i
6 0	A194	Hot or cold forged nuts for high pressure & high temperature service	XM19	Yes	¼ and larger	1	İ	1	80 000 75,000	183/271	BBB/C25	1
8AB	A194	Nuts machined from bars for high pressure & high temperature service	XM19	Yes	½ and larger		;	į	80,000 75,000	183/271	B88/C25	ı

Footnotes are grouped on the last page of this Part 1 series

ORIGINAL PAGE IS OF POOR QUALITY

								Mechanical properties	Incorporate	,		
		-				Bolt	Bolts, screws, studs	studs	Nuts		Hardness	
Grade	ASTM	Fastener		Is mfgr's ID symbol	Nominal size range	Proof load	Yield	Tensile strength	Proof load (psi) hvy hex		:	Remarks
mark	number	description	Material	req'd?	(inch)	(bsi)	(min psi)	(min psi)	hex	Brinell	Rockwell	or footnotes
вяа	A194	Hot or cold forgad or machined from bars for high pressure & high temperature service	XM19, carbide solution treated	Yes	% and larger	i	!	1	80.000 75.000	183/271	B88/C25	1
8S	A194	Hot or cold forged nuts for high pressure & high temperature service	S21800 (restricted phosphorus)	Yes	½ and larger	1		1	80,000 75,000	183/271	B88/C25	
8SB	A194	Nuts machined from bars for high pressure & high temperature service	S21800 (restricted phosphorus)	Yes	½ and larger	1	ļ	1	80.00 <u>0</u> 75.000	183/271	BBB/C25	
BSA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	S21800 (restricted phosphorus), carbide solution treated	Yes	½ and Larger		i		80.000	183/271	B88/C25	1
8LN	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 304N (with restricted carbon)	Yes	% and larger	1	1		80.000 75.000		B60/B105	
8LNB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 304N (with restricted carbon)	Yes	½, and larger		!	!	80.000 75.000		B60/B105	į
BLNA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 304N (with restricted carbon), carbide solution treated	Yes	¼ and larger	1	ì	:	80.000 75.000	126/192	B60/B90	i
8MLN	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 316N (with restricted carbon)	Yes	% and larger	}	i		80.000 75.000	126/300	B60/B105	i
8MLNB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 316N (with restricted carbon	Yes	% and larger	1	1 2	1	80.000 75.000	126/300		,
8MLNA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 316N (with restricted carbon). carbide solution treated	Yes	¼ and larger			1	80.000 75.000	126/192	B60/B90	
6 0	A194	Nuts machined from bars for high pressure & high	AISL 304, strain hardened	Yes	2.7	1	į	;	125,000	!	I	1
		temperature service			- 2*	1	į	ı	115 000	:	İ	-
					7.7	!		!	105,000 95,000	1	!	i
						İ	i		90,000	:		i
								Footnote	es are grot	uped on the	he last page of	Footnotes are grouped on the last page of this Part 1 series.

8 M

뭐

Ħ

Foolnoles are grouped on the last page of this Part 1 series.

								Mechanica	Mechanical properties	S		
						Bo	Bolts, screws, studs	studs	Nuts		Hardness	
Grade	ASTM			ls mígr's	Nominal	Proof	Vield	Tensile	Proof load			
ID mark	spec number	Fastener description	Material	symbol req'd?	range (Inch)	load (psi)	strength (min pst)	strength (min psl)	hvy hex	Brinell	Rockwell	Remarks or footnotes
N S	A194	Nuls machined from bars for high pressure & high	AISI 304N, strain bardened	Yes	% - %	ı	1	1	125,000	1	i	1
		temperature service			7 - 1	1	l	1	115,000	l	1	I
					1% - 1%	i	I	1	105,000	1	1	1
				·	1% - 1%	1	ļ	I	100,000	1	I	I
BMN	A194	Nuts machined from bars for high pressure & high	AISI 316N, strain hardened	Yes	% - %	1		1	125,000	1	!	
		temperature service			% · 1	1	1	I	115,000	ı	1	i
					1% - 1%	I	1	1	105,000	1	I	I
					1% - 1%	ı	ļ	1	000.000	1	ı	1
P.be.	A307. Grade A	Common bolls	Carbon steef	Yes	% - 4	1	I	000'09	1	121/ 241 [£]	B69/ B100 ^f	Marking on head, raised or depressed.
None req'd	A307. Grade B	Bolls for flanged joints	Carbon sieel	Yes	× - 4	1	1	60,000 min 100,000	1	121/212	B69/B95	Marking on head, raised or depressed.
77	A320	Bolts, screws, and studs for low temperature	AISI 4140, 4142, or 4145 quenched &	Yes	% - 2%	1	105.000	125,000	1		ı	∢
L7A	A320	Bolls, screws, and studs for low temperature service	AISI 4037 quenched & tempered	Yes	% - 2%	1	105,000	125,000	1	1	i	4
F.78	A320	Bolts, screws, and studs for low temperature service	AISI 4137 quenched & lempered	Yes	% - 2%	ı	105.000	125,000	1	1	1	∢
רזכ	A320	Bolls, screws, and studs for low temperature service	AISI 8740 quenched & tempered	Yes	% · 2%		105,000	125,000	i			∢
۲20	A320	Bolls, screws, and studs for low temperature service	AISI 4140, 4142, or 4145 quenched & lempered	Yes	% - 2%	ı	105.000	125,000	1		i	∢
121	A320	Bolts, screws, and studs for low temperature service	AISI 4037 quenched & tempered	Yes	% - 2%	1	105.000	125,000	I	l		ď
172	A320	Bolls, screws, and studs for tow temperature	AISI 4137 quenched & lempered	Yes	%-2%	I	105,000	125.000	ı		ı	<
		Service						Footnote	is are grou	th no bed	e last page	Footnotes are grouped on the last page of this Part 1 series.

Grade											The same of the sa	
Grade				le miorie	Notice	Bo	Bolts, screws, studs	studs	Nuts	Hardness	988	
mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size renge (inch)	Proof load (psl)	Yield etrength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brineli	Rockwell	Remarks or footnotes
173	A320	Bolts, screws, and sluds for low temperature service	AISI 8740 quenched & tempered	Yes	% - 5%	1	105,000	125,000	t	1	1	∢
143	A320	Bolts, screws, and studs for low temperature service	AISI 4340 quenched & lempered	Yes	7.4	ı	105,000	125,000	1	1	I	<
L7M	A320	Bolts, screws, and studs for low temperature service	AISI 4140, 4142, or 4145 quenched & lempered	Yes	1 2%	I	80.000	100,000	t	235 ^G max	899 ^С пах	∢
ני	A320	Boils, screws, and studs for low temperature service	Low carbon martensite steel, quenched & tempered	Yes	7.1	i	105,000	125,000	1	1	1	∢
B8 F	A320	Bolts, screws, and studs for low temperature service, Class 1	AISI 303 with sulfur or 303Se with selenium, carbide solution treated	Yes	% and larger	1	30,000	75,000	1	223 ⁰ max	896 ^б тах	∢
BBFA	A320	Bols, screws, and studs for low temperature service, Class 1A	AISI 303 or 303Se carbide solution treated in finished condition	Yes	% and larger	1	30,000	75,000	1	192 max	В90 тах	₹
BOE	A320	Boits, screws, and studs for low lemperature	AISI 303 or 303Se carbide solution	Yes	% - %		100.000	125,000		321	C35 max	4
		service, Class 2	treated and strain		Over	I	80.000	115,000	1	321	С35 тах	<
					Over .	I	65,000	105.000	i	321	C35 max	∢
					Over 1% - 1%	1	20,000	100,000	i	321 max	С35 тах	∢
A325 or option	A325, Type 1	High strength structural bolts	Medium carbon steel, quenched & tempered	Yes	%1 - %1 1.%1	85.000 74,000	92,000	120.000	11	248/331 223/293	C24/C35 C19/C31	ĪĪ
A326	A325, Type 2	High strength structural boils	Low carbon martensite steel, quenched & tempered	Yes	% - 1 1% - 1%	85.000 74.000	92,000 81,000	120.000		248/331	C24/C35 C19/C31	FF
A325	A325, Type 3	High strength structural boits	Weathering steel, quenched & tempered	Yes	% - 1 1% - 1%	85.000 74.000	92,000	120,000 105,000	11	248/331	C24/C35 C19/C31	7 7 H
A325M 8S	A325M. Type 1	High strength structural botts—metric	Medium carbon steel, quenched & lempered	Yes	M16 - M36	600 MPa	660 MPa	830 MPa		Vickers 255/336	C23/C34	K, L
A325M <u>65</u>	A325M. Type 2	High strength structural bolts—metric	Low carbon marlensile steel, quenched &	Yes	M16 - M36	600 MPa	660 MPa	830 MPa	ı	Vickers 255/336	C23/C34	, , ,

Grade							=	mechanical properties	היייםלמול	2		
Grade				ls mfar's	Nominal	Bolts	Bolts, screws, studs	tuds	Nuls	Hardness	ness	
mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psl) (Yield strength (min pst)	Tensile strength (min psi)	Proof load (psl)	Brineli	Rockwell	Remarks or footnotes
A325M 8S3	А325М, Туре 3	High strength structural bolts—metric	Weathering steet, quenched & tempered	Yes	M16 - M36	600 MPa	660 MPa	830 MPa	1	Vickers 255/336	C23/C34	J K. L
BC	A354, Grade BC	Bolts & studs	Alloy steet, quenched & tempered	Yes	% - 2% Over 2% - 4	105,000 95,000	000'601 000'66	125,000 115,000	1 1	255/331 235/311	C26/36 C22/C33	N.H.
© → , , , , , , , , , , , , , , , , , ,	A354, Grade BD	Bolls & sluds	Alloy steet, quenched & tempered	XeY	% - 2% Over 2% - 4	120,000 105,000	130,000	150,000	1 1	311/363 293/363	C33/C39	0, N, H 0, N, H
None req'd (P)	A394	Transmission lower bolts	Galvanized sleel	Yes	%. %. %. %. 1	(Single shear at threads based on 45,000 psl.)	near at lased on st.)	60,000	1	121/235	B69/B39	Marking on head, raised or depressed. (H)
B4B	A437, Grade B4B	Turbine-type boits, screws, studs, nuls, and washers for high temperature service	Alloy steel, specially heal treated	Yes	All dia	i	105,000	145,000	1	See remarks	C31/C37 for nuts & washers	331 max for bolts & sluds, 293/341 for nuts & washers. (A)
B4C	A437, Grade B4C	Turbine-lype bolls, screws, studs, nuts, and washers for high lemperature service	Alloy steel, specially heat treated	Yes	All dia	1	85,000	115,000	1	See	C21/C29 for nuts & washers	277 max for bolls & studs; 229/277 for nuts & washers. (A)
B4D	A437. Grade B4D	Turbine-lype bolls, screws, sluds, nuls, and washers for high temperature service	Alloy steet, specially heat treated	Yes	Thru 2% Over 2% - 4 Over 4 - 7	11 1	105,000 95,000 85,000	125,000	11 [See remarks See remarks	C27/C33 for nuts and washers	302 max for bolls and sluds, 263/311 for nuts and washers. (A)
-(A449	Bolls and sluds	Medium carbon steel, quenched & tempered	Yes	% - 1 Over 1 - 1% Over 1% - 3	85,000 74,000 55,000	92,000 81,000 58,000	120,000 105,000 90,000	111	255/321 223/285 183/235	C25/C34 C19/C30 —	Marking on head, raised or depressed. (H,O)
660 A (R)	A453, Grade 660 Class A	Bolls, screws, studs, nuls, and washers for high temperature service	Special alloy steel, specially heat freated	Yes	% and larger	1	85,000	130,000	1	248/341	1	A,R
660B (A)	A453, Grade 660 Class B	Bolts, screws, studs, nuts, and washers for high temperature service	Special alloy steet, specially heat treated	Yes	% and larger	1	85,000	130,000 Footnotes	are gro	248/341 Juped on th	— ne last page	130,000 — 248/341 — A.R. Footnotes are grouped on the last page of this Part 1 series.

Ţ

								Mechanical properties	propert	9.8		
				Is migr's	Nominat	Bol	Bolts, screws, studs	studs	Nuts	Hardness	ness	1
and A	ASIM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yleid strength (min psi)	Tensile strengih (min psi)	Proof load (psi)	Brineil	Rockwell	Remarks or footnotes
651A (R)	A453, Grade 651 Class A	Bolls, screws, sluds, nuls, and washers for high temperature service	Special alloy steel, specially heat Irealed	Yes	% - 3 Over 3 and larger	1 1	70.000 60.000	100,000	i †	220/280 220/280	11	A, A, B, B, B, B, B, B, B, B, B, B, B, B, B,
651B (A)	A453, Grade 651 Class B	Bolls, screws, studs, nuls, and washers for high lemperature service	Special alloy steel specially heat treated	Yes	% - 3 Over 3 and larger	1 1	60,000 50,000	95,000 95,000	1 1	210/270 210/270	11	A.A.
662A (F)	A453, Grade 662 Class A	Bolls, screws, studs, nuls, and washers for high lemperature service	Special alloy steel, specially heat treated	Yes	% and larger	1	85,000	130,000	I	255/321	1	A.R
6628 (R)	A453, Grade 662 Class B	Bolls, screws, sluds, nuls, and washers for high lemperature service	Special alloy steel, specially heat treated	Yes	% and larger	1	80.000	125,000		248/321	1	<
685A (R)	A453, Grade 665 Class A	Bolls, screws, studs, nuts, and washers for high temperature service	Special alloy steet, specially heat treated	Yes	% and larger	1	120,000	170,000	1	311/388		∢
6658 (A)	A453, Grade 665 Class B	Bolls, screws, studs, nuts, and washers for high temperature service	Special alloy steel, specially heat treated	Yes	% and larger	1	120,000	155,000		311/388		∀
None req'd	A489	Eyebolis	Carbon steel, quenched and tempered	Yes	1 21.	(S)	30,000	65,000 min, 85,000	1	1	1	-

ASTM footnotes

A Grade and manufacturer's Identification symbols shall be applied to one and of alloads. In identifier and to the heads of botts and acrews y' in demerter and terger (if available area is indequals, grade symbol may be marked on one and and manufacturer's Identification symbol marked on the other and)

B. To meet lensile requirements, Brinell hardness shall be over 201 HB (94 HRB)

C. A193 products are for high temperature service, A320 products are for low temperature service.

D. For sizes ½" in dismeter and smaller, maximum hard ness of 241 HB (100 HRB) is permitted.

E. Nuts machined from heat treated bars need not be reheat treated. F. Except when tested by wedge tenskal test

G. To meet tensile requirements. Brinell hardness shall L.S. not be less than 200 HB or 93 HHB
 Tan
 Tan

H. Boits (screws) less than three dramaters in length (and studs less than four drameters in length) shall have hard ness where not less than the minimum nor more than the marking manual address limits tequited, as hardness is it liver only mechanical requirement.

I. Excluding studs, all markings located on top of head, raised or depressed.

 Manufacturer may add other distinguishing nears indicelling the fastener is almospheric corrosion reviewal and of a weathering type

K. All markings shall be located on top of the time is an ised or depressed. Base of property class symmet. Full be positioned loward line closest perspinary of the 1 - 1 in the

L. Short length boils need only most hardress limits as hardress is their only meetancial requirement (finite to Table 4 of ASIM FS6 for definition of minimum length of product subject to tensite testing)

M. Grade BD botts X. through 1X' dramater shall be murked with ser radial lines 60 degrees apen on top of bott head. Whits may be rease symbol. N. Maris may be related to decrease of decreased for the top of the

N. Minks may be raised or depressed on the top of the head for bolls and on one end for studs

O. Grade BD in sures ½" through 1½" is enjuratent to SAE. Grade B. (Note: AISI 1541 does not salisty cherucal requiements for Grade BD.)

requirements for Grade BD)
Suries identifying syndol to understain the processing requirements with processing requirements when applicable and processing requirements when applicable

O. A449 in sites X* through 1X* is equivalent to SAE Grade 5

R in addition to identification symbols (grade and class). The type designation 2 shall also appear on all mill threaded taking material so processed. Absence of the type designation number indicates Type 1 processed material or machine cut threads.

S. Heler to ASTM Standard A489 for specific strength requirements

T Manufacturer's name or identification mark shall be forged in raised characters on eyebul surface

Grade and material markings—Part II

ASTM markings

The American Society for Testing and Materials, 1916 Bace St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

A	ASTM	Grade and mate	Grade and material identification markings required by ASTM specifications	n marking	gs requi	red by	ASTM	specific	ation	S		
								Mechanical properties	propert	ies		
	-			Is mfar's	Nominal	Bolts,	s, screws,	spnis	Nuts	Haro	Hardness	
Grade ID merk	ASTM spec number	Fasiener description	Material	symbol req'd?	size range (inch)	Proof load (psl)	Yield strength (min psi)	Tensite strength (min psi)	Proof load (psl)	Brinett	Rockwell	Remarks or footnotes
A490	A490, Type 1	High strength structural bolts	Alloy steet, quenched & tempered	Yes	X1 - X	120.000	130,000	150,000 mln, 170,000 max	1	311/352	C33/C38	Marking on top of head, raised or depressed. (H)
A480	А490. Туре 2	High strength structural bolts	Low carbon martensite steel, quenched & tempered	Yes	% - 1%	120,000	130,000	150,000 mm 170,000	1	311/352	C33/C30	Marking on top of head, raised or depressed (H)
A490	А490, Турв 3	High strength structural bolts	Weathering steel, quenched & tempered	Yes	% - 1%	120,000	130,000	150,000 min 170,000	į	311/352	C33/C38	Marking on top of head, raised or depressed (H.J)
A490M 10S	A490M, Type 1	High strength structural bolts—metric	Alloy steel, quenched & tempered	Yes	M16 · M36 mm	830 MPa	940 MPa	1040 MPa	ı	Vickers 3271382	C33/C39	¥
A490M 10S	A490М. Турв 2	High strength structural bolls—metric	Low carbon inartensite steel, quenched & tempered	Yes	M16 - M36 mm	830 MPa	940 MPa	1040 MPa		Vickers 327/382	C33/C39	×
A490M 10S3	A490M, Type 3	High strength structural bolts—metric	Weathering steef, quenched & tempered	Yes	M16 - M36 mm	830 MPa	940 MPa	1040 MPa	i	Vickers 327/382	C33/C39	J,K
None req'd (U)	A502, Grede 1	Structural rivels	Carbon steel	Yes	% - 1%		1	1	i	103/126	B55/B72	Markings on top of rivet head, raised or depressed
7	A502. Grade 2	Structural rivets	Carbon mangariese steel	Yes	% - 1%	1	1		i	137/163	876/885	Markings on top of rivel head, raised or depressed
e	A502, Grade 3	Structural riv As	Weathering steel	Yes	% - 1%	l	1	i	I	137/197	876/893	Markings on top of river head, raised or depressed

Footnotes are grouped on the last page of this Part II series.

								Mechanical properties	proper	lies		
				le mfgr's	Nominal	Bol	Bolls, screws,		Nuts	1 1	Hardness	
o t	Spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwell	Remarks or footnotes
B 51	A540. Grade B21.	Bolts, studs, washers, and note for nuclear and other special applications	Alloy steel (Cr-Mo-V), quenched & tempered	Yes	Thru 2 Over	1.1	105,000	120,000	11	241/285 248/302	11	33
	Class 5				Over 6 - 8	I	100,000	115,000	1	255/311	I	3
8 21	A540. Grade B21, Class 4	Bolls, studs, washers, and nuts for nuclear and other special applications	Alloy steel (CI-Mo-V), quenched & tempered	Yes	Thru 3 Over 3 - 6	11	120,000	135,000		269/331 277/352	11	* *
B 21 (3)	A540, Grade B21, Class 3	Bolts, studs, washers, and nuts for nuclear and other special applications	Alloy steel (Cr-Mo-V), quenched & tempered	Yes	Thru 3 Over 3 · 6	F 1	130,000	145,000	11	293/352 302/375	1 1	3 3
B21 (V)	A540, Grade B21, Class 2	Bolls, studs, washers, and nuts for nuclear and other special applications	Alloy steet (Or-Mo-V), quenched & tempered	Y 08	Thru 4	1	140,000	155,000	1	311/401	1	*
821 (3)	A540, Grade B21 Class 1	Bolls, sluds, washers, and nuts for nuclear and other special applications	Alloy steel (Cr-Mo-V), quenched & tempered	Yes	Thru 4	1	150,000	165,000		321/429	1	*
2 25	A540, Grade B22, Class 5	Bolls, sluds, washers, and nuts for nuclear and other special applications	AISI 4142:H, quenched & lempered	Yes	Thru 2 Over 2 - 4	1	105,000	120,000	11	248/293 255/302		≥ ≥
3 22	A540, Grade B22 Class 4	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & tempered	Yes	Thru 1 Over 1 - 4	11	120,000	135,000	11	269/341 277/363		≥ ≥
2 28	A540, I Grade r B22 e Class 3	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & lempered	Yes	Thru 2 Over 2 - 4	1 1	130,000	145,000	11	293/363 302/375	1 1	3 3
22	A540, E Grade r B22 8 Cless 2	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & tempered	Уев	Thru 3	1	140,000	155,000	1	311/401	1	3
8 22	A540, E Grade n B22, 8 Class 1	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & tempered	Yes	Thru 1%	1	150,000	165,000		321/401	1	3
333	A540, B Grade n B23, si Class 5	Bolls, studs, washers, and nuts for nuclear and other opecial applications	AISI E-4340-H, quenched & tempered	Yes	Thru 6 Over 6 · 8 Over		105,000	120,000 115,000 115,000		248/311 255/321 262/321		33 3
				-	ζ. 0		,	ootnotes a	lno B aı	ped on the	last page o	Footnotes are grouped on the last page of this Part II series

								Mechanical properties	proper	la c	_	
				,	T T T T T T T T T T T T T T T T T T T	Bolt	Bolls, screws,	studs	Nute		Hardness	
Grade 1D mark	ASTM spec number	Fastener description	Material	1D Symbol req'd?	slze range (inch)	Proof load (psl)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brineil	Rockwell	Remarks or footnotes
8 23	A540, Grade B23,	Bolls, studs, washers. and nuts for nuclear and special applications	AISI E-4340·H. quenched & tempered	Yes	Thru 3 Over 3 - 6 Over	-	120,000 120,000 120,000	135,000	111	269/341 277/352 285/363	11 1	33 3
					6 - 9%		000000	145 000		202763		N.
(S)	A540, Grade B23 Class 3	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI E-4340-H, quenched & lempered	Yes	Thru 3 Over 3 - 6 Over 6 - 9%	111	130,000	145,000 145,000 145,000	111	293/363 302/375 311/388	111	3 3
B23	A540, Grade B23 Class 2	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI E-4340-H, querched & tempered	Yes	Thru 3 Over 3 - 6 Over 6 - 9%	11 1	140,000 140,000 140,000	155,000 155,000 155,000	11 1	311/388 311/401 321/415	11 1	>> >
333	A540, Grade B23 Class 1	Bolts, studs, washers, and nuis for nuclear and other special applications	AISI E-4340-H, quenched & tempered	Yes	Thru 3 Over 3 · 6 Over 6 · 8	11 1	150,000 150,000 150,000	165,000 165,000 165,000	11 1	321/415 331/429 341/444		** *
B24 (3)	A540. Grade B24 Class 5	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340 Mod. quenched & lempered	Yes	Thru 6 Over 6 - 8 Over 8 - 9%	11 1	105,000 100,000 100,000	120,000 115,000	111	248/311 255/321 262/321	11 1	** *
85 4	A540, Grade B24 Class 4	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4340 Mod. quenched & tempered	Yes	Thru 3 Over 3 · 6 Over 6 · 8 Over 8 · 9%		120,000 120,000 120,000 120,000	135,000 135,000 135,000 135,000		269/341 277/352 285/363 293/363	11	33 3 3
824 (3)	A540. Grade B24. Class 3	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340 Mod, quenched & lampered	Yes	Thru 3 Over 3 · 8 Over 8 · 9%	111	130,000 130,000 130,000	145,000 145,000 145,000	11 1	293/363 302/388 311/388	11 1	333
B24 (V)	A540, Grade B24 Class 2	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340 Mod. quenched & tempered	Yes	Thru 7 Over 7 - 9%		140,000 140,000	155,000 155,000	11	311/401 321/415	1 1	* *
B24 (V)	A540, Grade B24 Class 1	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4340 Mod. quenched & tempered	Yes	Thru 6 Over 6 - 8	1 1	150,000	165,000 165,000 Fuotnotes	are gro	321/415 331/429 Juped on I	 he last page o	165,000 — 321/415 — W 165,000 — 331/429 — W Footnotes are grouped on the tast page of this Part II series.

	_								מבוויבה היסוקים	021110		
9	-			is migr's	Nomine		Bolls, screws,	s, studs	Nuts	L	Hardness	T
o ž	ASIM spec number	Fastener description	Material	symbol 164'd?	size range (inch)	Proof load (psl)	Yield strength (min psi)	Tensile strength (min psi)	 	Brin	Rockwell	Remarks
B24V (2)	A540, Grade B24V Class 3	Bolls, studs, washers, and nuls for ruulear and other special applications	AISI 4340V Mod. quenched & tempered	Yes	Thru 4 Over 4 · 8 Over	11 !	130,000	145,000	11	293/363	1 !	1
3)	A540, Grade B24V Class 2	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340V Mod. quenched & 1empered	Yes	Thru 4 Over 4 · 8 Over	111	140,000	155,000 155,000 155,000		311/368 311/401 321/415	i 1 .	3 3 3
(S)	A540, Grade B24V Class 1	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340V Mod, quenched & tempered	Yes	Thru 4 Over 4 · 8 Over	11 1	150,000 150,000 150,000	165,000 165,000 165,000	1 1 1	321/415 331/429 331/444	111	33 3
None req'd	A563, Grade 0	Nuts for general structural and mechanical use	Carbon steel	o Z	X - 1%			1	>	103/302	B55/C32	1
None b'pei (x)	A563, Grade A	Nuts for general structural and mechanical use	Carbon steel	O.	7 4	1	1	1	>	116/302	B68/C32	***
None req'd (X)	A563, Grade B	Nuts for general structural and mechanical use	Carbon steel	O _N	% - 1 1% - 1%	1 +	1 1		> >	121/302	B69/C32 B69/C32	
	A563, Grade C	Heavy hex nuts for general structural and mechanical use	Carbon steel	Yes	4 · %		1	1	144,000	143/352	B78/C38	Grade mark shall be applied to one nul face.
(F)	A563, Grade C3	Heavy hex nuts for general structural and mechanical use	Weathering steet	Yes	% - 4		ļ		144,000	143/352	B78/C38 (Grade mark shall be applied to one nut face.
,	Grade D	1	Alloy steel	Yes	7.4	1	1		>	159/352	BB4/C38 C	Grade mark shall be applied to one nul face.
5 5	A563, Grade DH	uclural 0	Alloy steel, quenched & tempered	Yes	7.4	1	1		>	248/352	C24/C38 C	Grade mark shall be applied to one nut face. (2.88)
2	Grade DH3	rieavy nex nuts for general structural and mechanical use	Weathering steel, quenched & tempered	Yes	4 - %	1	1	1	175,000	240/352	C24/C38 C	Grade mark shalt be applied to one nut face.

								Mechanical properties	propert	ies		
				le mfor's	Nominal	Bol	Bolls, screws.	studs	Nuis	Hard	Hardness	
Grade ID mark	ASTM spec number	Fastener	Material	Ol Ol	size range (m m)	Proof load	Yield	Tensile strength	Proof	Brinell	Rockwell	Remarks or footnotes
	AEEGM	Niste for page of eliminal	Carbon claal	92	M16.				520	Vickers	B70/C30	Z.DD
•	Class 5	and mechanical use—	Page 1901BO	2	M 4				MPa	130/302		i
	•	metric			M5 &	1	1	ı	280 _{CC}	Vickers	B70/C30	Z,00
					M6 M8 &	1	1	1	MP.a 59000	Vickers	B70/C30	Z.DD
					M10				MPa ⊗	130/302		
					M12.	1	1	I	610'₹ MPa	Vickers	B70/C30	7,00
					M20 -	I	l	I	630cc	Vickers	B 78/C30	2,00
					M36 M42	I	1	1	MPa 630 ^{CC} MPa	146/302 Vickers 128/302	B70/C30	2,00
•	ASGRA	Nuts for peneral structural	Carbon steel	CN CN	M3 -		-		006	Vickers	B85/C30	2,00
•	Class 9	and mechanical use-		2	M 4				MPB	170/302		. 1
		metric			M5 &	l	I	1	915 MPa	Vickers 188/302	B89/C30	7.DD
					M8 &	I	l	ţ	940	Vickers	B89/C30	2,00
					M10				MPa	188/302	000000	00
					M12.	ļ	1	I	ose MPa	Vickers 188/302	Basicso	7,00
					M20.	ł	1	ł	920	Vickers	B89/C30	2,00
					M100				MPa	188/302		
2	A563M,	Nuts for general structural	Alloy steel,	Yes	M1.6	ı	1	1	1040	Vickers	C26/C36	2,00
	C SSBC	metric	desicuen o remoeren		M12 -	1	i	I	1050	Vickers	C26/C36	2,00
					M16				MPa	272/353		
					M20 · M36	i	1	1	1060 MPa	Vickers 272/353	C26/C36	7.00
12	A563M	Nuls for general structural	Alloy steet,	Yes	M3 ·	1	l		11500c	Vickers	C26/C36	2,00
	21 8885	metric	peredicies & perceiph		M8 &	l	1	1	1160°C	Vickers	C26/C36	2,00
					M10				MPa	272/353		ć r
					M12.	l	ļ	1	MPa ~	VICKers 272/353	C26/C36	7,00
					M20.	1	I	I	1200cc	Vickers	C26/C36	2,00
9	AEC 344	Mude for opposed etucial	Carbon clost	200	00 M				1075	Vickere	вколСзя	7.00
6	Class 8S	nuts for general structural and mechanical use—metric	Caloui steel	S.B.	M36		I	<u>!</u>	MPa	188/372	063/630	20,7
883	A563M, Class 8S3	Nuls for general structural and mechanical use—metric	Weathering steel	Yes	M12 - M36	I	i	i	1075 MPa	Vickers 188/372	B89/C38	J.Z.DD
108	A563M, Class 10S	Nuts for general structural and mechanical use—metric	Alloy steel, quenched & lempered	Yes	M12 - M36	1	-	!	1245 ⁰⁰ MPa	Vickers 272/372	C26/C38	7.00
1053	A563M, Class	Nuts for general structural and mechanical use—	Weathering steel, quenched & tempered	Yes	M12 - M36	ı	ł	1	1245 MPa	Vickers 272/372	C26/C38	J,Z,DD
	1053	metric		_				Footnotes	аге дго	thed on the	ne last page of	Footnotes are grouped on the last page of this Part II series.

								Mechanical properties	I proper	les		
				le mfor's	Nonimon	B	Bolls, screws, studs	studs	Nuts	l	Hardness	-
Orade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
None req'd See EE	A574	Socket head cap screws	Alloy steel, quenched & tempered	No (EE)	% and snaller % - 4	140,000	 FF 153,000	180,000	1 1	1 1	C39/C45	Ι
12.9	A574M	Socket head cap screws, metric	Alloy steel, quenched & tempered	Yes	M1.6 - M48 mm	970 MPa	1100 MPa	1220 MPa	1	Vickers 372/434 DPH	C38/C44	99
A687	A687	Bolls & studs	Alloy steel, quenched & tempered	N _O	%-3	ļ	105,000	150,000 max			i	Marking appears on the end of product. HH
See "Remarks"	A761	Fasteners for pipe, pipe anchors and arches	Galvanized steel	Yes	% only			- See Footnote II	Inote II -			
None req'd	C648	Orill screws for gypsum board on light-gage steel shanks	Grade 1013 to 1022 carbon steel wire in accordance with ASTM ASTR	N N		1		1	1	1	C45 min case hardness	
None	C893	Type G screws for gypsum board to gypsum board	Grade 1013 to 1022 carbon sleet wire in accordance with ASTM A548	ON.	 		1		1	1	C45 min case hardness	1
None req'd	C894	Type W screws for gypsum board to wood traming	Grade 1013 to 1022 carbon steel wire in accordance with ASTM A548	°Z	1	1	1	1	1	1	C45 min case hardness	1
GR30	F432, Grade 30	Roof & rock bolts and accessories	Carbon steel	Yes	7.1	1	30.000	60,000	Sel	See ASTM F432	32	77
GR65	F432, Grade 55	Roof & rock boits and accessories	Carbon steel	Yes	%1-%	I	55,000	85,000	Sec	See ASIM F432	32	LL.
GR76	F432, 1 Grade a 75	Roof & rock bolls and accessories	Carbon sleel	Yes	× -1	1	75,000	100,000	Soc	See ASTM F432	32	LL.
GR40	F432, F Grade H 40	Roof & rock bolls— headed deformed bars	Carbon sleel	Yes	All sizes] 1			Sec	See ASTM A615	51	3
GR60	F432, F Grade h 60	Ricof & rock bolls— headed deformed bars	Carbon steel	Yes	All sizes	1			Sec	See ASIM A615	15 +	3
							1-	outnotes	are grou	ned on th	o last page	Footnotes are grouped on the tast page of this Part II series.

Orad D D				la mior's	Nominel	B		studs	Nute	H	Hardness	_
Grade ID Asrk							DOILE, SCIEWS,					
	Spec number	Fastener description	Material	ID eymbol req'd?	size range (inch)	Proof toad (pel)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
See "Remarks"	F436	Hardened washers	Carbon or weathering sleel	Yes	* - 4	1	ı	1	1	ŀ	See ASTM F436	Type 3 (weathering steel) washers shall be marked with the symbol
×	F436M	Hardened washers— Metric Type 1	Carbon steel	Yes	M100mm	ı	1	1			E	X
ЭМ	F436M	Hardened washers— Metric Type 3	Wealhering steel	Yes	M100 mm	1	ł	1	1	1	l I	XX
None req'd	F467	Nuts for general use	ETP copper UNS C11000	N _O	%1.%	l	_		30,000 min	!	F65 min	
None req'd	F467	Nuts for general use	Brass UNS 27000	ON N	% - 1%	1	1	i	60,000 min	1	F55 min	mare a
None req'd	F467	Nuts for general use	Naval brass UNS C46200	No	% - 1%	1	1		50,000 min		965 min	
None req'd	F467	Nuts for general use	Naval brass UNS C46400	No	% 1 1%	t	1	1	50.000 min	1	B55 min	
None req'd	F467	Nuts for general use	Phosphor bronze UNS C51000	ON	% - 1%	ı	I	I	60.000 mm	1	860 min	
None req'd	F467	Nuts for general use	Aluminum bronze UNS C61300	No	%1 - %	1	ı	1	80,000 min	1	B70 mm	
None reg'd	F467	Nuls for general use	Aluminum bronze UNS C61400	ON.	%1-%	1	1	1	75,000 min	1	870 mín	
None req'd	F467	Nuts for general use	Aluminum bronze UNS C63000	No	% - 1%		1	1	100,000 nin		B85 min	1
None req'd	F467	Nuts for general use	Aluminum silicon bronze UNS C64200	No	%1 - %	1	1	1	75,000 min		875 rnin	
None req'd	F467	Nuts for general use	Silicon bronze UNS C65100	No	%-1%	1	1	ı	70.000 min	ŀ	B75 min	
None req'd	F467	Nuts for general use	Silicon bronze UNS C65500	No	% - 1%	1	l	1	50,000 min	1	860 min	1
None req'd	F467	Nuts for general use	Silicon bronze UNS C66100	N _O	% - 1%	1	ı	1	70,000 min	1	875 min	1
None req'd	F467	Nuts for general use	Manganese bronze UNS C67500	No	% - 1%	1	1	1	55,000 min	I	B60 min	l

ŧ

Ī

								Mechanical properties	I propertie	9.8		
				18 mfor's	Noning	Bol	Bolts, screws, studs	studs	Nuts	Harc	Hardness	
Grade 1D mark	ASTM spec number	Fastener description	Material	1D symbol req.d?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwell	Remarks or footnotes
None req'd	F467	Nuts for general use	Cupro-nickel UNS C71000	No	77 - 17,	1	1	1	45,000 min	ţ	1850 nitn	i
None req'd	F467	Nuts for general use	Cupro mckel UNS C71500	N _O	%1 - %	1	1	1	55,000 nini	1	860 min	-
None req'd	F467	Nuts for general use	Ni-Mo based UNS N10001	No	%1 - 1%	İ	.	1	115.000 min	ı	C20	l
None req'd	F467	Nuls for general use	Ni-Mo-Cr based UNS N10002	No	% - 1%	l	1	!	110,000 min	1	C20	1
None req'd	F467	Nuls for general use	Ni Cu Class A UNS N04400	No	% - 1%	. 1	ì	1	80.000 min	i	875 mm	
None req'd	F467	Nuts for general use	Ni-Cu Class B UNS N04405	No	% - 1%	1	j	1	70,000 nim	ı	B60	1
None req'd	F467	Nuts for general use	Ni-Cu-Al based UNS N05500	ON O	% - 1%	ı	1		130,000	}	C24	l
None req'd	F467	Nuts for general use	Aluminum 2024 UNS A92024	NO	% - 1%	ı	1	1	55.000	í	B70 mm	1
None req'd	F467	Nuts for general use	Aluminum 6061 UNS A96061	NO	71.7	I	1	I	40,000	1	B.40 min	1
None req'd	F467	Nuts for general use	Aluninun 6262 UNS A96262	No	X · 1 ½	1		1	52,000 mm	1	B60 min	_

ASTM footnotes

H. Boits (screws) loss than three diemeters in length (and study less than four diemeters in length) shall have hard ness should not less than the minimum nor note than the maximum nor note than the maximum hardees fronts required, as hardress is their only mechanical requirement.

top of head L. Excluding sluds, all markings located on raised or depressed. J. Manufacturer may aid office disjunguishing marks with caling the tastener is atmospheric correction tesistant and of a weathering type

K. All materings shall be located on top of the head raised or depressed. Base of property class symbols shall be costilioned loward the closest betwhere of the head.

The numeral 1 may be used at manufacturer's option

V. Marking of class identification is not mandatory.

Wild Grade and manufacturer's uponification synthols shall be applied to one end of shall asked to the best soft boils of all several that a serial serial serial properties of the standard and a feet marked for one end and the manufacturer's prefettle. The properties of the other synthols and stody.

smaller than "" demater and for "" study requiring more than a total of three synthols. The marking shall be a matter of agreement between purchaser and manufacturer.

X. When individual grade marking is specified in the in-quiry and order, the mark shall be the grade letter symbol on one nut face.

Y. Proof had stresses vary depending on nut style size. Hirrad series and in some cases on whether or not nuts are galvanized. Refer to ASTM Standard A563 for epectific values. Z. Marks may be raised or depressed. If, however, marks are kicated on the bearing suiface for on one of the wrenching fiels for ASG3M faasteries) they shall be depressed.

AA, fluis made in accordance with ASIM A194. Grade 2 or 21; and marked with their grade symbol are acceptable equivalents for Grades C and D nuts.

BB. Ruis made in accordance with ASTM 219t Grade 2H and marked with its grade symbol are an acceptable equivation for Grade DH nuts.

ישם שויו\$ CC. Proof load stresses are reduced for over-

Refer to ASTM A56334 for specific values

DD. Nots in nominal thread diameters M4 and smaller need not be marked Property Elast despotations shall be coted do the floop or bearing surface to inthe ripy or flange or on one of the wentering flasts of the out Makinds to cated on the top or bearing surface or on this top of the flange shall be postioned with the base of the winneracts indirect shall be postioned with the base of the winneract or one wenching flast shall have the numeract on one wenching flast shall have the numeraction one wenching flast shall have the numeral 9 underlined.

EE in the USA there is only one grade of socket head cap serve commercially available and most manufacturers apply from own source marks by knotling pattern around the outside of the head

FF. When equyment of sufficient capacity is not reachy available machined spacements shalf meet 153 ks. run yeld strength.

GO. Alt screws with rominal chaineters of 5 min and Linger require marking. Maiking may be on side or higo of Tead HM. Marking small sizes (customarly less than 1,1) may not be practical. Consult producer for minimum size that can be marked.

If Assembly botts conform to ASIM A449 requirements must conform to finate C of A561. Headwall anchorage bolling material conforms to A307 and nuts conform to Glade B of A563.

JJ. Roit heads shall be mashed with either raised or de-pressed mashs at manufactures required. Mashs shall in-clude grade and diameter dentitic alone when applicable manufacturer is synthal and boils length.

The tabled buss threated solving bars extensions bey old mashers threated solving bars extensions bey old mashers threated solving bars extensions bey old mashers threated coloning and the particular are not required to be marked. Netromed bearing and header plants by that haddered washers shall be marked with manu-teriums is synthed thats shall be marked in an conductor with the ASM specification to which they were manufac-tured. Expansion strells shall be marked with manufac-hiered is spirited and lade size for which they are interved.

KK. All marking syndols shall be depressed washer face

TE, Rock word has bress of Cities is strongle bandered in pered. Cob. 45 box die galsanoze. And A73 contoured OAT.

Grade and material markings —Part III

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for tasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for tasteners and are generally specific in referencing the actual product covered. A full fange of types of products of various styles, thread series lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

4	ASTM	Grade and material Id	eriai ideniincaut	entification markings required by ASTM specifications	iinhai sf	ea nà	ASIM	hecuir	ations			
								Mechanical properties	properti	sə		
				ls mfor's	Nominal	Bol	Bolts, screws,	studs	Nuts	Hard	Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
None req'd	F467	Nuts for general use	Titanium Gr 1	ON O	71 - 77	I	1		40,000 min		Vickers 140 min	
None req'd	F467	Nuts for general use	Titanium Gr 2	No	% - 1%	1	1	1	55,000 min	ļ	Vickers 150 min	-
None req'd	F467	Nuts for general use	Titanium Gr 4	ON	7.1 - 7%	1	1		85,000 min		Vickers 200 min	1
None req'd	F467	Nuts for general use	Tilanium Gr 5	NO No	7 1%	1	. [-	135,000 min	1	C30 min	1
None req'd	F467	Nuts for general use	Titanium Gr 7	ON	% - 1%	ł	J		55,000 min		Vickers 160 min	1
None req'd	F467M	Nuts for general use— metric	ETP copper UNS C11000	No	M6 - M36 mm	1			205 MPa		F65 min	
None req'd	F467M	Nuts for general use—metric	Brass UNS C27000	No	M6 - M36 mm	1	1		415 MPa	1	F55 min	I
None req'd	F467M	Nuts for general use	Naval brass UNS C46200	N ₀	M6 - M36 mm	1	l		345 MPa		865 min	-
None req'd	F467M	Nuts for general use— metric	Naval brass UNS C46400	No	M6 - M36 mm	1	1	,	345 MPa		855 min	
None req'd	F467M	Nuts for general use— metric	Phosphor bronze UNS C51000	NO	M6 - M36 mm	ļ			415 MPa		B60 min	-
None req'd	F467M	Nuts for general use	Aluminum bronze UNS C61400	No	M6 - M36 mm	1	,	ı	520 MPa	1	B70 mm	ı
None req'd	F467M	Nuts for general use— metric	Aluminum bronze UNS C63000	CN	M36 mm	į	;	İ	690 MPa	I	B85	İ

								Mechanical properties	I propert	ies		
,				Is migr's	Nominal	Bol	Bolts, screws,		Nuts	1	Hardness	
D mark	Spec number	Fastener description	Materiat	ID symbol req'd?	size range	Proof load	Yield strength (min)	Tensile strength (min)	Proof load	Brinell	Rockwell	Remarks or footnotes
None req'd	F467M	Nuts for general use	Aluminum silicon bronze UNS C64200	ON.	M6 - M36 mm		,	1	520 MPa		4	Į
None req'd	F467M	Nuts for general use— metric	Silicon bronze UNS C65100	No	M6 - M36 mm		ı		485 MPa	i	B75	!
None req'd	F467M	Nuts for general use	Silicon bronze UNS C65500	ON	M6 - M36 mm			ļ	345 MPa		860 min	
None req'd	F467M	Nuls for general use— metric	Silicon bronze UNS C66100	NO	M6 - M36 mm	1	1		485 MPa		B75 nım	
None req'd	F467M	Nuls for general use—metric	Manganese bronze UNS C67500	ON	M6 - M36 mm	1		i	380 MPa		B60	
None req'd	F467M	Nuts for general use metric	Cupro-nickel UNS C71000	ON O	M6 - M36 mm				310 MPa		B50	1
None req'd	F467M	Nuts for general use— metric	Cupro-nickel UNS C71500	N _O	M6 - M36 mm	1			380 MPa		B60	į
None req'd	F467M	Nuts for general use—metric	Ni-Mo based UNS N10001	No	M6 · M36 mm		1	-	/90 MPa		C20	
None req'd	F467M	Nuts for general use— metric	Ni-Mo-Cr based UNS N10002	N _O	M6 - M36 mm	1		1	760 MPa		CZ0	
None req'd	F467M	Nuts for general use—metric	Ni-Cu Class A UNS N04400	N O	M6 - 36 mm				550 MPa	1	B75	4 4
None req'd	F467M	Nuts for general use	Ni-Cu Class B UNS N04405	ON	M6 - M36 mm	i	1	! -	485 MPa	!	B60	!
None req'd	F467M	Nuts for general use metric	N-Cu-Al based UNS N05500	No	M6 - M36 mm	!	!	1	900 MPa		C24	i
None req'd	F467M	Nuts for general use—metric	Aluminum 2024 UNS A92024	N _O	M6 - M36 mm	!		!	380 MPa	1	B70	Ţ
None req'd	F467M	Nuts for general use metric	Aluminum 6061 UNS A96061	No	M6 - M36 mm	!			275 MPa		B40	
None req'd	F467M	Nuts for general use	Aluminum 6262 UNS A96262	CN	M6 - M36 mm		1		360 MPa		B60	
None req'd	F467M	Nuts for general use – metric	Dtanium Gr. 1	S.	M6 - M36 mm				275 MPa		Vickers 140 nm	
None req'd	F467M 1	Nots for general use.~ metric	Utanium Gr 2	CN	М6 - М36 ини	:			380 MPa		Vickers 150 min	

								Mechanical properties	properti	es		
_				ls mfor's	Lecimon	Bol	Bolts, screws, studs	studs	Nuts		Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID Symbol req'd?	size range (inch)	Proof load (psl)	Yield strength (min psl)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
None req'd	F467M	Nuts for general use	Titanium Gr 4	No	M6 - M36 mm	-	ì	ļ	590 MPa	1	Vickers 200 min	- 1
None req'd	F467M	Nuts for general use	Titanıum Gr 5	No	M6 - M36 mm	l	1	i	930 MPa	1	C30 min	
None req'd	F467M	Nuts for general use	1แลกเมก: Gr 7	No	M6 - M36 mm	1		:	380 MPa	i	Vickers 160 nin	-
None req'd	F468	Bolts, hex cap screws, and studs for general use	ETP copper UNS C11000	o Z	27 - 28 -	1	10.000	30,000 min 50,000 max	1	Į.	765 790	1
None req'd	F468	Bolls, hex cap screws, and studs for general use	Brass UNS C27000	OZ.	2 - 12	1	50,000	60,000 min 90,000 max	:		F55 F80	l
None req'd	F468	Bolts, hex cap screws, and studs for general use	Naval brass UNS C46200	NO	% - 1%		25,000	50,000 min 80,000 max		1	865 890	1
None req'd	F468	Bolls, hex cap screws, and studs for general use	Naval brass UNS C46400	ON	¥ - ¥	;	15,000	50,000 min 80,000 max	!	1	855 1975	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Phosphorbronze UNS CS1000	O Z	<u>2</u> .		35,000	60,000 mm 90,000			860 1895	i
None req'd	F468	Bolls, hex cap screws, and studs for general use	Aluminum bronze UNS C61:300	NO	25 - 4 - 4		90'000	80,000 min 110,000	į		B70 B95	1
							45,000	75,000 min 105,000 max		!	8/0 89/0	
None req'd	F468	Bolls, hex cap screws, and studs for general use	Aluminum bronze UNS (161400	ON N	-2° -2°	į	35,0110	75,000 min 110,000 max	1	:	B70 1895	

ORIGINAL PAGE IS OF POOR QUALITY

						L		Mechanical properties	properti	30		
_									l dold			
Grade ID mark	ASTM spec number	Fastener description	Material	is mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (pst)	Bolts, screws, of Yield d strength () (min psi)	Tensile strength (min psi)	Proof load (psi)	Hard	Hardness neil Rockwell	Remarks
None req'd	F468	Bolts, hex cap screws, and studs for general use	Aluminum bronze UNS C63000	°2	1.1%		20,000	4	,	1	88.5 81.00	
None red'd	F468	Bolts, hex cap screws, and studs for general use	Aluminum silicon bronze UNS C64200	C Z	7 - 1%		35.000	75,000 min 110,000	i	1	875 895	-
None red'd	F468	Bolls, hex cap screws, and sluds for general use	Silicon bronze UNS C65100	o N	>. %.		55,000	70,000 min 100,000	i	1	B35	
				·	% - 1%	1	40,000	55,000 min 90,000 max	ļ	}	938 895	I
None red'd	F468	ļ	Silican bronze UNS C65500	ON	%1%		20,000	50,000 min 80,000 max	1	1	B80	
p,bes	F468		Silicon branze UNS C66100	°Z	21 - 22		35,000	70,000 min 100,000 max	ı		875 1895	
None req'd	F468	Bolls, hex cap screws, and studs for general use t	Manganese bronze UNS C67500	O Z	% - 1%	1	25,000	55,000 min 85,000 max	l	;	B/60 B/800	
p,be.	F468	Bolts, hex cap screws, (Cupro-nickel UNS C71000	ON.	71 - 77	1	15,000	45,000 min 75,000 max	!	1	BSO B85	1
None req'd	F468	Bolts, hex cap screws, can studs for general use.	Cupro-nickel UNS C71500	CN	2 - 1%	i i	20,000	55,000 niin 85,000 max		1	B60 1895	, ;
None red,q	F468	Bolls, hex cap screws, Nand studs for general use 11	N-Mo based UNS N10001	S N	% · 1%		45,000	115,000 rmm 145,000		:	 03 05 05 05 05 05 05 05 05	

								Mechanical properties	propert	88		
				ls mfar's	Nominat	Bol	Bolts, screws, studs	tuds	Nuts	Hardness	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psl)	Yield strength (min psl)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwell	Remarks or footnotes
None req'd	F468	Bolts, hex cap screws, and studs for general use	Ni-Mo-Cr based UNS N10002	o Z	1.1%		45,000	110,000 mm 140,000	l	ı	87/8 87/8	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Ni-Cu Class A UNS N04400	O _N	% - %	1	40,000	80,000 min 130,000 max	i	1	87 <u>5</u> C25	l
		•			% · 1½	1	30,000	70,000 min 130,000 max	1	1	860 C25	l
None req'd	F468	Bolts, hex cap screws, and studs for general use	Ni-Cu Class A UNS N04400 Hot formed product	o Z	7-1%	l	30,000	70,000 min 120,000 max	l	1	969 895	l
None req'd	F468	Bolls, hex cap screws, and studs for general use	Ni-Cu Class B UNS N04405	SZ Z	21 - 12	İ	30,000	70,000 niin 125,000 niax	ı		220 C20	
None req'd	F468	Botts, hex cap screws, and studs for general use	Ni-Cu-Al based UNS N05500	O _N	% - %	1	000'06	130,000 min 180,000	1	+	C24 C37	1
					1 - 1%	1	85,000	130,000 min 180,000 max			C24 C37	l
None req'd	F468	Bolts, hex cap screws, and studs for general use	Aluminum 2024 UNS A92024	C N	7 - 1 × 2	,	36,000	55,000 min 70,000 max	1	1	870 1975 1985	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Akumuun 6061 UNS Agidott	° Z	47 17 43	;	31,000	37,000 mm 52,000 max	1	1	840 850	ı

Grade and material markings—Part IV

ASTM markings

iypes o	S of products of	types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required. Grade and material identification markings required by ASTM specifications	s. lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and nerial identification markings required by ASTM specifications	duced to meet n markin	ASTM require	ments an	d would be	marked for g	rade and	material ic	dentification a	vered. s required.
								Mechanical properties	propert	9.8		
Grade	ASTM	Fastener		Is mfgr's ID symbol	Nominal size	Proof load	Bolts, screws, studs of Yield Tend	studs Tensile strength	Proof load	H	Hardness	E e e
None req'd	number F468	description Bolls, hex cap screws, and studs for general use	Material Aluminum 7075 UNS A97075	red.d? 0N	(inch) % - 1%	(psd)	(min psi) 50,000	61,000 min 76,000	(bs)	Brinell	Rockwell B80- B90	or footnotes
None req'd	F468	Bolts, hex cap screws, and studs for general use	Titanium Gr 1	ON	% - 1%	ı	30,000	40,000 ruin 70,000 max		i	Vickers 140/160	ſ
None req'd	F468	Bolts, hex cap screws, and studs for general use	Titaniun Gr 2	O.V.	22 24 24	i	45,000	55,000 Inin 85,000 Hax		1	Vickers 160/180	
None req'd	1.468	Bolts, hex cap screws, and studs for general use	Idamun (j. 4	O.V.	4 · 12	1	75,000	85,000 mm 115,000 max		1	Vickers 200/220	
None req'd	F468	Bolts, hex cap screws, and studs for general use	Hamun Gr 5	2 V	\$1 - 1%		125,000	135,000 min 165,000 max	i	1	9/5 3/8	1
None req'd	F468	Bolls, hex cap screws, and studs for general use	Hanium (sr. 7	No	7 13	i	45,000	55,000 mm 85,000		į	Vickers 160/180	1
None req'd	F 468M	Biolis, hex cap screws, and studs for general use metric	LTP copper UNS CTION	ON.	M6 -	1	70 MPa	205 min 345 max MPa		i	765 F30	

								Mechanical properties	properti	9.8		
				ls miar's	Nominat	Bol	Bolts, screws, studs	studs	Nuts	Hard	Hardness	
Grade 1D mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength MPa	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
None req'd	F468M	Botts, hex cap screws, and studs for general use —metric	Brass UNS C27000	ON	M6 - M36	ı	345	410 min 620 nax		1	F55 F80	1
None req'd	F468M	Bolts, hex cap screws, and studs for general use — metric	Naval brass UNS C46200	ON	M6 - M36		170	345 min 550 max	1	1	865 890	
None req'd	F468M	Bolts, hex cap screws, and studs for general use—metric	Naval brass UNS C46400	NO	M6 - M36	1	105	345 min 550 max			B55- B75	1
None req'd	F468M	Bolts, hex cap screws, and studs for general use—metric	Phosphor bronze UNS C51000	ON	M6 - M36	1	240	410 mm 620 max	1	l	895 895	1
None req'd	F468M	Bolts, hex cap screws, and studs for general use—metric	Aluminum bronze UNS C61400	ON	M6 - M36	1	240	520 กษา 760 กเลง		1	870 – 895	1
None req'd	F468M	Bolls, hex cap screws, and studs for general use	Aluminum bronze UNS C63000	ON.	M6 - M36	I	345	690 min 900 max	1	!	885 B100	1
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Aluminum silicon bronze UNS C64200	NO	M6 ·	. [240	520 min 760 max	1	1	875 895	.
None req'd	F168M	Bolls, hex cap screws, and studs for general use —metric	Silicon bronze UMS C65100	No	M6 - M20 M24 - M36	i	380 275	480 min 690 max 380 min 620 max	1		By By By By By By By By By By By By By B	}
None req'd	F468M	Botts, hex cap screws, and studs for general use —inetric	Silicon bronze UNS C65500	NO	M6 - M36	1	140	345 min 550 max	l	1	860 B80	
None req'd	F468M	Bolls, hex cap screws, and studs for general use — metric	Silicon bronze UNS Ch6 (0)	NO	M6 - M36	1	240	480 min 690 max	ì	: 1	875 	ı
None req'd	F468M	Bolls, hex cap screws, and studs for general use — metric	Manganese bronze UNS C67500	No	M6 - M36		170	380 min 590 max		1	B60 B90	1
None req'd	F468M	Bolls, hex cap screws, and studs for general use metric.	Cupro-nickel UNS C71000	No O	M6 - M36	1	105	310 min 520 max	i	I	850 885	l

								Mechanical properties	propert	10.5		
				Is mfgr's	Nominal	Bol	Bolts, screws, studs	studs	Nuts	Hard	Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength MPa	Proof load	Brinelf	Rockwell	Remarks or footnotes
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Cupro nickel UNS C/1500	No	M6 - M36	1	140	380 mm 590 max		:	1860 1895	÷
None req'd	F468M	Bolls, hex cap screws, and studs for general use —metric	Ni-Mo based UNS N10001	No	M6 - M36		310	790 mm		:	<u>a</u>	
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Ni-Mo-Cr based UNS N10002	No	M6 - M36	i	310	760 mm 970 max	:		765 085	
None req'd	I 468M	Bolls, hex cap screws, and studs for general use —metric	N-Cu Class A UNS N04400	9 2	M6 - M20 M24 - M36		275	550 min 900 max 480 min 900 max	1 1	1 1	87.5 C25 C25 C25 C25	
None req'd	F4681A	Bolts, hex cap screws, and studs for general use —metric	Ni-Cu Class A UNS N04400 Hot formed product	ON O	M6 - M36		205	480 mm 830 max	1	#	860 B95	
None req'd	F468M	Botts, hex cap screws, and studs for general usemetric	Nt Cu Class B UNS N04405	CN	M6 - M36		502	480 min 860 max	·		869 920 920	
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Ni-Cu-Al based UNS NO5500	O.N.	Mb - M20 M24 - M36	: 1	620	900 mm 1240 max 900 mm 1240 max			3/E 3/E	i i
None req'd	F468M	Botts, hex cap screws, and studs for general use —metic	Atuminum 2024 UNS A92024	NO	M6 ·	:	250	380 mm 480 max	!		870 885	
None req'd	F468M	Bolts, hex cap screws, and studs for general use — metric	Akıminum 6061 UNS A96061	No	M6 - M36	1	215	260 mm 360 max	1		840 850 850	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Alutrinum 7075 UNS A97075	N _O	M6 - M36	j	345	420 max	:		B80 B30	1
None req'd	F468M	Bolts, hex head screws, and studs for general use metric	Hanum Gr 1	NO	M6 - M36	i	205	280 mm		+	Vickers 1:40/160	1

ORIGINAL PAGE IS OF POOR QUALITY

								Mechanical properties	propert	es		
				le marke	No series	Bol	Bolts, screws, s	studs	Nuts	Hardness	less	
Grade 1D mark	ASTM spec number	Fastener description	Material	Symbol symbol require	size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength (min MPa)	Proof	Brineil	Rockwell	Remarks or footnotes
None req'd	F468M	Bolts, hex head screws, and studs for general use—metric	Titanium Gr 2	No	M6 - M36	İ	310	380 min 590 max	!		Vickers 16()/180	1
P,ber	F468M	Bolts, hex head screws, and studs for general use —metric	Titanium Gr 4	ON	M6 - M36		520	590 min 790 max	!	1	Vickers 200/220	-
None req'd	F468M	Bolts, hex head screws, and studs for general use—metric	Titanium Gr 5	ON	M6 - M36	1	860	930 min 1140 max	:	i	C30 C36	
None req'd	F468M	Bolts, hex head screws, and studs for general use —metric	Titamurn Gr. 7	CZ	M6 - M36	1	310	380 min 590 max	1		Vickers 160/180	
4.6	F568	Bolts, screws, studs for general engineering applications—metric	Low or medium carbon steel	Yes	M5 - M100	225	240	400	ř.	Vickers 120/220	B67_ B95	K,LL,MM,NN
4.8	F568	Bolts, screws, studs for for general engineering applications—metric	Low or medium carbon steel, partially or fully annealed as required	Yes	M16 - M16	310	340	420		Vickers 130/220	B71— 895	K,LL,MM,NN
5.8	F568	Bolts, screws, studs for general engineering applications—metric	Low or medium carbon steel, cold worked	Yes	M5 - M24	380	420	520	:	Vickers 160/220	B82 B95	K,LL,MM,NN
8.8	F568	Bolts, screws, studs for general engineering applications metric	Medium carbon steel, quenched and tempered	Yes	M16 - M72	009	099	830	l	Vickers 255/336	C23 C34	K,LL,MM,NN
8.8	F568	Bolts, screws, studs for general engineering applications—metric	Low carbon martensite steel, quenched and tempered	Yes	M16 - M36	009	660	8 30		Vickers 255/336	C23 C34	K,LL,MM,NN
8.8.3	F568	Bolts, screws, studs for general engineering applications—metric	Almospheric corrosion resistant steel, quenched and tempered	Yes	M16 - M36	600	660	830	:	Vickers 255/336	C23 C34	J,K,LL,MM.NN
8.6	F568	Bolls, screws (and studs M12 or larger) for general engineering applications—metric	Medium carbon steel, quenched and tempered	Yes	M16 - M16	059	720	900		Vickers 280/360	C27 C36	K.LL,MM,NN,OO
(00)	8971	Studs for general cognocerny applications metric	Medium carbon steet, queer fied and tempered	Yes	Tess than	650	720 Foo	900 otnotes are	grouped	Vickers 280/360 d on the R	C27 C3b	900 Vickers C27 K.11,MM.NN.00 2807360 C3o Footnotes are grouped on the fast page of this Part IV series

								Mechanical properties	propert	ies		
				le mforte	Montaga	Bol	Bolts screws stude	studs	Nith	ì	Hardoner	·
Grade ID mark	ASTM spec	Fastener er description	Material	symbol symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength (min MPa)		Brinet	Rockwell	Remarks
# 00	F568	Studs for general engineering applicationsmetric	Low carbon martensite steel, quenched and tempered	Yes	Less than M12	650	720	006		Vickers 280/360	9 18	K,LL,MM,NN,OO
8.6	1568	Bolts, screws (and studs M12 or larger) for general engineering applications—metric	Low carbon martensite steel, quenched and tempered	Yes	M16 ·	650	720	900		Vickers 280/360	75 25 25	K.LL.MM,NN.OO
10.9	F568	Bolls, screws (and studs M12 or larger) for general engineering applications — metric	Medium carbon steel, quenched and lempered Medium carbon alloy steet, covenched and	Yes	M5 - M20 M5 -	830	94()	1040		Vickers 327/382 Vickers	हुत हुत्	K.I.L.MM.NN.OO
(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(1 568	Studs for general engineering applications - metric	lempered Medium carbon or medium carbon alloy steel, quenched and tempered	Yes	Less than	830	940	1040		327/382 Vickers 327/382	දිදි දිදි	K.LL.MM.NN,OO
	1568	Studs for general ungineering applications — metric	Low carbon martensile steet, quenched and tempered	Yes	Less Bran Mr2	830	94()	1040	3 /	Vickers 327/382	<u> </u>	K,LL,MM,NN,OO
10.9	F568	Bolls, screws (and studs M12 or larger) for general engineering applications - metric	Tow carbon friatferbate steel, quenched and tempered	Yes	M5 - M36	830	940	1040	7 8	Vickers 327/382	3 ,8	K,LL,MM,NN,OO
10.9.3	F568	Bolls, screws, studs for general engineering applications metric	Almospheric corrosion resistant steel, quenched and tempered	Yes	M16 · M36	830	940	1040	> 35	Vickers 327/382	<u>5</u> \3	J.LL.MM.NN.OO
12.9	877.1	Bolls, screwy dend shots M12 or lurger) for gameral eriginesting applications metric	Alloy steed, quenched and tempered	Yes	M16-	970	1100	1230	> 15	Vickers 372/434	C4:1	K,H,MM,NN,OO
√ 00	1 568	Studs for general engineering applications metric	Alloy steel, quenched and tempered	Yes	ress than 9	970	1100	0.57	V.	Vickers 372/4/34	5 15	K.II.MM.NN.OO
							00	dnotes are	padnos6	on the t	ast page of II	Louholes are grouped on the last page of this Part IV series

								Mechanical properties	propert	es		
				le méne's	Monimoly	Bol	Bolts, screws, studs	studs	Nuts		Hardness	, , , , , , , , , , , , , , , , , , ,
Grade 1D mark	ASTM spec number	Fastener description	Material	symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psl)	Tensile strength psi	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
1 (PP)	F593	Bolts, hex cap screws and studs	Stainless steet, alloys 303, 303 Se, 304, 305, 384, XM1, XM7	No (PP)								
			• Cold worked		%· >?	1	65,000	100,000	İ	1	895 C32	Чд
					%-1%	ł	45,000	85,000 140,000		1	B80 C32	
			Headed and rolled from annealed stock and then re-annealed		7 - 12 2 - 13		50,000 max (machined specimen)	85,000 max	!	Ī	B85	
			Machined from annealed or solution annealed slock		4 - 18	ŀ	30,000	75,000 100,000		-	B65 B95	
			Machined from		%· ×	1	95,000	120,000	1	}	C24 C36	
			Strain Hardened Stock		7. 7.	1	75,000	110,000	ì	l	3/3 3/3	
					1% - 1%	i	000'09	100,000		I	₹ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					71 - 41		45,000	95,000		l	B90 C28	
2 (PP)	F593	Bolts, hex cap screws and studs	Stamless steel, altoy 316	No (PP)								
			• Cold worked		3.º 2.º	ł	65,000	100 000	i		895 C32	dd'l
					7. 1. 7. 2. 1. 7.	ŀ	45,000	85 000	'	ı	B80 C32	
			Headed and rolled		27	,	50,000	85,000			BBS	
			rrom amealed slock and then re annealed				(machined specimen)					
			Machined from annealed of Solution annealed stock		%1 - 3	i	30,000	75,000 100,000			35 25 35 35	
			• Educhined from		3.5		95,000	000 001			3\3 3\3	
			s.Halli haroettet siekk			1	75,000	110,000			<u>9</u> 8	
					2 - 2 2 - 2	ŀ	000'09	140,000		i	895 750 30	
					- " - "		45,000	95 000 130 000			930 200 100 100 100 100 100 100 100 100 10	
							<u> </u> 2	ofnotes an	dnoiti	ed on the	last page of t	Footnotes are grouped on the last page of this Part IV series

_								Mechanical properties	propert	ies		
Grade	ACTA			is migr's	Nominal	Во	Bolts, screws,		Nuts	1	Hardness	
1D mark	spec	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength psi	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
3 (PP)	F593	Bolts, hex cap screws, and studs	Stainless steel alloys 321 and 347	No (PP)								
			 Cold worked 		λ.** *		000'59	100,000	į	1	88 7	dd i
					21.12	1	45,000	85,000 140,000	i.	1	880 C33	
			 Headed and rolled from annealed stock 		21.15	1	50,000 max	85.000	İ		B85	
			and then re-annealed				(machined specimen)				į	
			 Machined from annealed or solution annealed stock 		74 - 74 74 - 74	1	30,000	75,000	i	!	B65 P95	
			Machined from Strain hardened stock		8 . T	i	95,000	120,000			C24	
				,	1 - 4	i	75,000	110,000	i	ì	ξος Σος Σος Σος	
					1. 11.	1	000'09	00000			135 1895 1895	
					12 - 12 1 - 21	i	45,000	140 000 95,000 130,000		i	S 3 S S S S S S S S S S S S S S S S S S S	
(PP)	F593	Bolts, hex cap screws, and studs	Stambess steet, alloys 4.00 and 430F • Machined from annealed or solution annealed stock	ON (PP)	<u> </u>		35,000	70,000 100,000	:		865 1895	dd'i
5 (PP)	F593	Bolts, hex cap screws, and studs	Stamless steel, alloys 410, 416, and 416 Se	No (PP)								
			 Hardened and lempered at 1050 F mm 		25 27	1	- 000'06	140 000	1	!	<u> </u>	ddil
			• Hardened and tempered at 525 F		7.15	1	120,000	160,000 190,000			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
6 (PP)	1 593	Bolts, thex cap screws, and studs	Stamless steel, alloy 431	No (PP)								
			 Hardened and tempered at 1050 F min 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	000'001	175,000 150,000			<i><u></u></i>	4 4.
			• Hardened and Tempered at 525 F		T. T.		140,000 180 000 220,000	180 000 220,000			S (2)	
				_			č	moles are	groupec	On the k	ist page of th	roomoles are grouped on the last page of this Part IV series

ORIGINAL PAGE IS OF POOR QUALITY

							Me	Mechanical properties	properties			
				Is mfar's	Nominal	Bolts,	Bolts, screws, studs	sp	Nuts	Hardness	955	
Grade ID mark	ASTM spec number	Fastener description	Material	tD symbol req'd?		Proof s load s (psl) (r	Yield T strength st (min psi)	Tensile strength psi	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
(PP)	F593	Bolis, hex cap screws, and studs	Stanless steet, alloy 630 • Solution anneated and age hardened after forming	NO (PP)	% - 1%		105,000	135,000	1	1	C28 - C38	dd≐i
1 (PP)	F594	Nuts	Staintess steet, alloys 303, 303 Se, 304, 305, 384, XM1, and XM7	No (PP)								
			 Annealed after all threading 		%T - %	I	:	1	70,000 nin	1	B85 max	dd.
			Machined from annealed or solution annealed stock		2 - 1%	1			75,000 nim	l	B65 B95	I
			Cold worked		7. %	i	ļ	!	100,000	!	895 /5.	ı
					4 - 1%	ţ	1	!	85,000 min	ļ	880 C32	
			Machined from		%		<u>.</u>		120,000		F/S	ŀ
			strain hardened stock		% - 1	1		ł	110,000	t	3/S	
					15 - 1%	!	ı	Ŧ	100,000	I	832 Z	
			·		14, - 14,	i	i	1	85,000 min	1	B90 25	
4	F541	Eyebolts	Alloy steet, forged,	Yes	12 - 21/2	Refer to	70,000 mm 95,000	000'36	-	197/248	893	Markings are forged
			quenched, and tempered			complete F541 spec	100,000 max					in raised characters.

ASTM footnotes

L.E. whiting stricts, all markings located on top of local trised or depressed

4. Manufacturer may add other dedunguestoring mades indi-colling the fasterier is atmospheric configurativesstant and of a viciditeting type.

K. Altinathings shall be located our lop of the heart cover or depressed. Howeod property class syndols shall be positioned toward the class of periphecy of the heart.

LL. Alternatively, for hearhead products, markings may be indefined on side of head with the base of the property class symbols good marked to be before the beauting surface.

MM. Boths and scrows of norminal thread dameters small er than MS need mit be marked Additionally storted and received scrows of norminal thread dameters. MS and larger meet and remarked Metric, but and screws shall not be marked with radio and screws shall not be marked with radio ince symbols.

NN. Shots of nominal thread themeters smaller than M5 need not be marked. Additionally classes 4.6. 4.8, and 5.8 shots smaller than M12 need not be marked.

OO. This is the grade mark synthal for shots of this property class in sares 455 up to both not included MTZ.

PP, coake and manufacturers intentify after required only when specified on the coake.

Grade and material markings—Part V

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

A	ASTM		Grade and material identification markings required by ASTM specifications	ın markınç	js requir	ea pà	ASIM	specific	ations			
								Mechanical properties	d properti	80		
				is mfar's	Nominel	Bol	Bolts, screws, studs	studs	Nuts	Har	Hardness	
Grade 1D mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength psi	Proof toad (pst)	Brinell	Rockwell	Remarks or footnotes
2 (PP)	F594	Nuts	Stainless steet, alloy 316 • Annealed after all threading	No (PP)	1,4 - 1,7		1		70,000	ł	B85	dd'i
			Machined from annealed or solution annealed stock		% 1 1%	1			75,000 rnin		B65 B95	
			Cold worked		% - %	1			100,000		B95	
					% - 1%	l		1	min 85,000	I	C32 B80 C35	
			Machined from strain hardened stock		% - %	1	l !	1	120,000		C24	
					7 1	-	1	l	min 110,000	1	S 38	
					1% - 1%	1	1	1	100,000	1	C35	
		,			1% - 1%	I	1	}	min 85,000	I	C28 C30	
я (РР)	F594	Nuis	Stainless steel, alloys 321, 347	No (PP)								l, PP
			 Annealed after all threading 		% · 1%	i	I I	i	70,000 min	ł	B85 max	
			Machined from annealed or solution annealed stock		% - 1%	1	1	;	75,000 riin		865 895	
			 Cold worked 		%-%	í	1	:	100,000	1	895	
					% - 1%	ļ	i		min 85,000		1 1880 1890 1890 1890 1890 1890 1890 189	

								Mechanical properties	I properti	es	_	
				Is mfar's	Nomina	Boff	Bolts, screws, studs	studs	Nuts	1	Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psł)	Yield strength (min)	Tensile strength (min)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
			Machined from strain hardened stock		% - % % - 1 1% - 1%		1 1		120,000 ruin 110,000 min 100,000	1 1 1	C24 C36 C32 C32 C32 C32 C30	
4 (PP)	F594	Nuts	Stainless steel, alloys 430, 430F • Machined from annealed or solution annealed stock	No (PP)	%1 - %	1	į		85,000 min 70,000	1	B90 C28 B65 B95	dd.
5 (PP)	F594	Nuts	Stainless steel atloys 410, 416, 416 Se • Hardened and tempered at 1050 F min	No (PP)	% - 1%			l	110,000 nun	1	C20 C30	dd'i
			Hardened and tempered at 525 F min		% - 1%	1			160,000 min	-	C34 C45	
6	F594	Nuis	Stainless steel, alloy 431 • Hardened and tempered at 1050 F min	oN (PP)	71 - 1%	1	1	1	125,000 min	1	25 C32	dd'i
			 Hardened and tempered at 525 F min 		% + 1%	ı		1	180,000 min		C40 C48	
-	F594	Nuis	Stainless steel, alloy 630 Solution annealed and age hardened after forming	No (PP)	X - 15	1	j		135,000 min		C28 C38	dd'i
A1-50	F 738	Bolls, screws, and studsmetric	Stainless steel, alloys 303, 303 Se, 304, 305, 384, xM1, xM7 • Headed and rolled from annealed stock and then re-annealed	Kes	M1 6 - M5 mm M6 - M36 mm	i I	210 MPa	Soo MPa Soo MPa Footnotes		Vickers 155/220 Vickers 155/220	B81 895 881 895 ne last page o	500 Vickers B <u>81</u> I,MM,00 MPa 155/20 B95 60 MPa Vickers B <u>81</u> 155/220 B95 I footnotes are grouped on the last page of this Part V series

- **J**

								Mechanical properties	propert	les		
			-	is migr's	Nomhael	Bott	Boits, screws, studs	studs	Nuts	Har	Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	Popular Pagid?	size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPs)	Proof load (MPa)	Brineil	Rockwell	Remarks or footnotes
A1-70	F738	Bolls, screws, and studsmetric	Stainless steel, alloys 303, 303 Se, 304, 305, 384, XM1, XM7	Yes	M1.6 - M5 M6 - M20 Over M20 - M36	1 1	450	700 700 550	1 1 1	Vickers 220/330 Vickers 220/330 Vickers	B96 C33 C33 C31	Г.ММ.ОО
A1-80	F738	Bolls, screws, and sluds —metric	Stainless steel, alloys 303, 303 Se, 304, 305, 384, XM1, XM7 • Machined from strain hardened stock	Yes	M1.6 - M5 - M5 - M6 - M6 - M20 Over M20 Over M24 Over M24 - M30 Over M30 - M36 - M36		600 500 400	800 800 700 650		Vickers 240/350 Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	C23 C23 C23 C36 C36 C36 C36 C36 C36 C36 C36 C36 C3	I,MM,00
A2.50	F738	Bolls, screws, and studs —metric	Stainless steel, alloys 321, 347 • Headed and rolled from annealed slock and then re-annealed	Yes	M1.6 - M5 M6 - M36	1 1	210	500	1 1	Vickers 155/220 Vickers 155/220	881 895 881 895	I,MM,OO
A2.70	F738	Bolts, screws, and studs —metric	Stainless steet, alloys 321, 347 • Cold worked	Yes	M1 6 - M5 M6 - M20 Over M20 - M36	1 1 1	450	700 700 950	1 1 1	Vickers 220/330 Vickers 220/330 Vickers 160/310	B96 C33 C33 C33 C31 C31	1,MM,QO
A2-80	F 738	Bolts, screws, and studs —metric	Stamless steel, alloys 321, 347 • Machined from strain hardened stock	Yes	M1 6 - M5 M5 M6 - M6 - M20 Over M20 Over M24 - M34 - M30 Over M30		600 500 400 300	800 700 650 600		Vickers 240/350 Vickers 240/350 Vickers 200/310 Vickers 180/2H5	C23 C23 C23 C23 C36 B96 B96 C36 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	I,MM,QQ
A 4.50	1.738	Bolls, serows, and studs arrethe.	Stamless steel, alloy 316 • Headed and rolled from annealed stock and then re-annealed	Yes	M1 6 - M5 M6 - M6 - M36		210	Section 1	are gro	Vickers 155/220 Vickers 155/220 virped on t	881 895 881 895 106 last page o	500 Vickers 681 LAMA, O.C. 155/220 695 LAMA, O.C. 155/220 695 LAMA, O.C. 155/220 881 L55/220 695 Locitroles are grouped on the last page of this Part V series

								Mechanical properties	propert	es		
				te moor!	Nominal	Boff	Bolts, screws,	studs	Nuts	Harc	Hardness	
Grade ID mark	ASTM spec number	Fastener description	Materiai	Symbol symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
A4.70	F738	Boits, screws, and studs —nietric	Staintess steet, alloy 316 • Cold worked	Yes	M1 6 - M5 M6 - M20 Over M20 - M36	1 1 1	450	700 700 550	1 1 1	Vickers 220/330 Vickers 220/330 Vickers 160/310	896 C33 C33 C31	I,MM,OO
A4-80	F738	Bolls, screws, and studs —metric	Stainless steet, altoy 316 • Machined from strain hardened stock	Yes	M1.6 - M5 M6 - M20 Over M20 Over M24 Over M30 Over M30 Over M30 - M36 - M36 - M36		600 500 400 300	800 800 700 650 610		Vickers 240/350 Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	23 23 23 23 23 23 23 23 23 23 23 23 23 2	OO WW.O
F1.45	F738	Bolts, screws, and studsmetric	Stainless steet, alloys 430, 430F • Headed and rolled from annealed stock and then re-annealed	Yes	M1.6 - M5 M6 - M36		250	450 450		Vickers 135/220 Vickers 135/220	874 896 874 896	I,MM,00
F1-60	F738	Bolts, screws, and studs —metric	Stainless steel, alloys 430, 430F • Cold worked	Yes	M1 6 - M5 M6 - M36	1 .	410	009	1 1	Vickers 180/285 Vickers 180/285	889 C28 C28	I.MM.QO
C1-50	F738	Bolls, screws, and studs —metric	Stainless steel, alloy 410 • Machined from armeated or solution aimeated stock	Kes	M1.6 - M5 M6 - M36	1 1	250	500	1 1	Vickers 155/220 Vickers 155/220	B81 B81 B96	I,MM,QO
C1-70	F 738	Holls, screws, and studs	Stainless steel, altoy 410 • Hardened and tempered at 565 C min	Yes	M1 6 - M5 M6 - M36	1 !	410	200	1 1	Vickers 220/330 Vickers 220/330	B96 C34 C34	I.MM.OO
C1-110	1738	Bolls, screws, and studs metric	Stainless steet, alloy 410 • Hardened and termpered at 275 C min	Yes	M1 6 - M5 M6 - M36	;	8.20	1100 1100 Footnotes	are gro	Vickers 350/440 Vickers 350/440 utped on the	C36 C36 C36 C45 he last page c	1100 - Vickers C36 1,MM,OO 350/440 C45 350/440 C45 350/440 C45 Footbooks are grouped on the last page of this Part V series

								Mechanical properties	proper	lies		
Grade	ASTM			ls mfgr's	Nominal	00	Bolts, screws, studs	studs	Nuts	Harc	Hardness	
D mark	spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (Min MPs)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
C3-80	F738	Bolls, screws, and studsmetric	Stainless steel, alloy 431 • Hardened and tempered at 565 C min	Yes	M16 - M5 M6 - M36	1 1	— 640	800	1 1	Vickers 240/340 Vickers 240/340	සුසි සූ සි	I,MM,00
C3-120	F/38	Bolls, screws, and studs —metric	Stainless steel, alloy 431 • Hardened and tempered at 275 C	Yes	M1.6 - M5 M6 - M36	1 1	950	1200	1 1	Vickers 380/480 Vickers 380/480	C33 C33 C48	I,MM,00
C4-50	F738	Bolls, screws, and studs —metric	Stainless steel, alloys 416, 416 Se • Machined from annealed or solution annealed stock	۲es	M1.6 - M5 M6 - M36	1 1	250	500		Vickers 155/220 Vickers 155/220	BB BB BB BB BB BB BB BB BB BB BB BB BB	I.MM.OO
C4-70	F738	Bolts, screws, and studsmetric	Stainless steel, alloys 416, 416 Se • Hardened and tempered at 565 C min	Yes	M1.6 - M5 M6 - M36	1 1	410	700		Vickers 220/330 Vickers 220/330	2 2 BB	I,MM,QQ
C4-110	F738	Bolts, screws, and studs metric	Stainless steel, alloys 416, 416 Se • Hardened and tempered at 275 C min	Yes	M1 6 - M5 M6 - M36	1 1	820	1100	1 1	Vickers 350/440 Vickers 350/440	<u></u>	I,MM.00
P1-90	F738	Bolls, screws, and studs metric	Stainless steel altoy 630 Solution annealed and age hardened after forming	Yes	M1.6 - M5 M6 - M36	1 1	902	006		Vickers 285/370 Vickers 285/370	C28 C38 C38 C38	L,MM,OO
None req'd	F835M	Hex socket head cap screws—metric	Alloy steel— quenched and tempered	ON	M3 - M20	1	1100	1040		Vickers 372/434	C38	HR
A1-50	F836	Niils — metric	Stainless steel— alloys 303, 303 Se, 304, 305, 384, XM1, XM7 Machined from annealed or solution annealed stock, or formed and annealed	Yes	M1 6 M36		1		50d	Vickers 155/220	500 Vickers BBL SS 155/220 B95 155/220 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95 156/20 B95	SS

ORIGINAL PAGE IS OF POOR QUALITY

								Mechanical properties	propert	ies		
				i d	Nominal	Bol	Bolts, screws,	studs	Nuts		Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	s migras ID symbol req'd?	size range (mm)	Proof load (MPa)	Yleid strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
A1.70	F836	Thits metric	Slantess steel—alloys 303, 303, 303, 304, XM1, XM7, • Cold worked	Yes	M1.6 - M20 Over M20 - M36	1	. 1	÷	7007 1550	Vickers 220/330 Vickers 160/310	896 733 883 731	SS
A1.80	1836	Muls- metric	Stainless steet, altoys 303, 303, 303, 884, XM1, XM7, XM7 • Machined from strain hardened stock	Yes	M11 6 - M20 Over M20 - M24 Over M24 - M30 Over 30 - M36		, • 1 U		009	Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	යි. යි.කි. යි.කි. වූසු	SS
A2-50	F8 55	Nuts - metric	Stanless steel, alloys 321, 347 • Maclimed from annealed or solution annealed stock, or formed and annealed	Yes	M1.6. M36				DOT:	Vickers 155/220	H81 H95	88
A2.70	1839	That's media:	Staintess steet, alkey 321, 347 • Cold worked	Yes	M1 6 M20 Over M20 - M36	: :			99	Vickers 220/330 Vickers 160/310	85 33 23 23 23 23 23 23 23 23 23 23 23 23	SS
A2.80	8.39	Plats - metric	Stamless steel, altoy 321, 347 • Machined from strain hardened stock	× S S S S S S S S S S S S S S S S S S S	M1.6 - M20 Over M20 - M24 Over M21 - M30 Over M30 - M36 - M36	: 1 : .	. , ;	i	000	Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285		SS
A4.50	1.836	Hutsmetric	Stanless steel, alloy 316 • Machined from annealed or solution annealed stock, or formed and annealed	Yes	M36 M36		1	-	900	Vickers 155/220	881 895	SS
ASTM 1. For Sudom crossed or 1. Per Sudom crossed or 1. Per Sudom crossed or 1. Should be controlled or 1. Per Sudom crossed o	footnotes by Junes and constant lenger sector anger sectors that constant engle test	ASTM footnotes Labeling Judes all markers is constructed by of the of consistent Professional markers in the order to be shown to happe seal AstM to markers is the order to be order.	MM. Balls and a reas of notininal finered durinelets small or than 15 nevel but be marked. Additionally, shalled and received a soral normal from the facility of durinelets 15 and but at the final fer marked. Additionally, additional statements 15 and but it to final fer marked. Additionally, additional series shall be additionally and series shall be additionally.	a reas, of outmind thread dometers small dead accounted. Additionally, stotled and and and and and and and and and an		PP, triade and room required only when OQ, kenatic along the portloaset.	PP, trade and namely fines a dendfu alon spokes, are repared ody when apsched ut the men. OO bleath about marking of shot salidities a cortex of by the point leavet.	fith alteness so the uniform	ende,	SS. Marke one of the wrent the for allows thread du	SS. Markings stadl be on the K one of the writer long lists. Mo over bing little stadl be expor- be alreasy thay be staged or be alreasy thay be sugged or be alreasy thay are start.	SS. klackings shall be on the top of nut, top of llange, or on one of the virtue bing late. Minkings hocated out one of the owner bing late, shall be departs of hakings on all other hocated in the standard of departs of the order order

Grade and material markings—Part VI

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

Grade and material identification markings required by ASTM specifications ASTM

_								Mechanical properties	propert	les		
,				Is mfgr's	Nominal	Bol	Bolts, screws, studs	studs	Nuts	Har	Hardness	
10 mark	spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPs)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
A4.70	F836	Nuts-metric	Stainless steel, alloy 316 • Cold worked	Yes	M16 - M20 Over M20 - M36	1	i i		700	Vickers 220/330 Vickers 160/310	3 3 3 3 3 3 3	SS
A4.80	F.B365	Nuts — metric	Stamless steel, alloy 316 • Machined from strain hardened stock	× es	M1 6 - M20 Over M20 - M24 Over M24 - M30 Over M30				800 700 650	Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	5/8 3/8 3/8 3/8 5/8 3/8 3/8 3/8	SS
F1.45	F 8365	Nutsmetric	Staintess steet, alloy 430, 430F • Machined from anneated or solution anneated stock, or formed and anneated	Yes	M16 -				450	Vickers 135/220	1874 1836 1836	SS

Footnotes are grouped on the tast page of this Part VI series

								Mechanical properties	propert	ies		
				le mfor'e	Nominat	Bolt	Bolts, screws, studs	studs	Nuts		Hardness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPa)	·i	Brinell	Rockwell	Remarks or footnotes
C1-70	F836	Nuts — metric	Stantess steet, altoy 410 • Hardened and tempered at 565 C min	Yes	M16 -	1	i		700	Vickers 220/330	1936 C34	SS
C1-110	F836	Nuts- metric	Stainless steel, altoy 410 • Hardened and tempered at 275 C	Yes	M1 6 - M36	:			0011	Vickers 350/440	0.00 C45	38
C3.80	1 8 46 6 48 46	Mulsmetric	Stantess steel, alloy 431 • Hardened and tempered at 565 C min	∠es	M1.6 • M36	1			GR SS	Vickers 240/340	18	SS
C3-120	F836	Nuls metric	Stamless steel, alloy 431 • Hardened and lempered at 275 C min	Yes	M16 -				1200	Vickers 380/480	38 147	SS
C4-70	F836	Nuts —metric	Stantess steel, alloy 416, 416 Se • Hardened and tempered at 565 C	Yes	M16-	:			00/	Vickers 220/330	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	SS
C4:110	FB36	Rots - metric	Stamtess steel, alloy 416, 416 Se • Hardened and Tempered at 275 C mm	× × × × × × × × × × × × × × × × × × ×	M1 6. M36	,		officies, at	0011 8 adnos6 a	SS0/440 350/440 eef on the	036 7.25 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0	350/440 C36 SS 350/440 C45 SS 50/440 C45 SS 50/440 C45 SS 50/440 C45 SS 50/440 Settes

								Mechanical properties	propert	ies		
				•		8	Rolls screws stude	ctude	Nith		Hardnace	
Grade 1D mark	ASTM spec number	Fastener description	Material	Is migr's ID symbol req'd?	Nominal size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
P1-90	F836	Ruts - metric	Stainless steel, alfoy 630 • Solution annealed and age hardened alter forming	Yes	M16 -	i	·		900	Vickers 285/3/0	₹\ [®]	SS
A1.50	F83/M	Socket head cap screwsmetric	Stantess steet, alloys 303, 304, 305, 384, XM1, XM7 • Annealed	Yes	M16 - M5 M6 - M36	i l	520	500 500	!	Vickers 155/220 Vickers 155/220	8.05/ 8.00/ 80/ 80/ 80/ 80/ 80/ 80/ 80/ 80/ 80/	99
A1-70	F837M	Socket head can screws —metric	Shantess steet, aflays 303, 304, 305, 384, XM1, XM7 • Cold worked	Yes	M1.6 - M5 - M6 - M14 - M16 -	{	400	095	! ! !	Vickers 220/330 Vickers 220/330 Vickers 160/310	3	99
C1:110	F 83754	Socket head cap screws	Stambess steet, alloy 410 • Heat freated	Yes	M1.6 - M5 M6 - M36		BSO	1100	: '	Vickers 350/440 Vickers 350/440	30 5 30 5 15 3 3 5	ეფ
None req'd	F 844	Plam (flat) washers for general use	Steel, unhardened	No	Phru 3."							1
ASTM Footnotes 66. All ser	ootnotes	GG. All screws with normal dometers of 5 mm and larger require marking. Marking may be on the sake or kep of the tead.		\$\$. Kurkuns, hall be un the buyof and hop of lamps or on one of the xix is dual per unitary factories by a ded or one of the xix is dual place, dishwarps by a ded one one of the xix is dual per one of the buyons, and effect has a time in my be tassed or depresent. But, an anomal more also provides MT and it is a factories buy be tassed or depresent.	to the byrotout for lits. Kunkings borot we depresent. Blank ask or depresent. I	p of flanse c red on one or right on nor at her marker	fron The Host Prod f					

This concludes the ASTM grade marking compilation.

Grade and material markings—Part VII

SAE and GM markings

Several years ago the Society of Automotive Engineers, 400 Commonwealth Dr. Warrendale, PA 15096. developed a strength grading system for carbon and alloy steel commercial fasteners. Today it is the most widely used and copied system in existence in this country. General requirements are presented in the following table. General Motors Corp issues standards which are broadly used outside this one company. For this reason, GM cross references to SAE Grades are included in this listing.

Grade and material identification markings required by SAE and GM specifications SAE and GM

							-	Mechanical properties	properti	25		
				le mtor'e	Nominat	Bolt	Bolts, screws, studs	studs	Nuts	Harc	Hardness	
Grade ID mark	Spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof toad (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwell	Remarks or footnote(s)
None req'd	SAE J429 Grade 1 GM 255-M	Bolts, screws, studs and U-bolts ^A	Low or medium carbon steel	Yes except studs	% - 1%	33,000 ^B	36,000 ^C	000'09	1	1	870 8100	D Equivalent to ASTM A307, Grade A
None req'd	SAE J429 Grade 2 GM 260-M	Bolts, screws, and studs	Low or mediun carbon steel	Yes except studs	% - % Over % - 1%	55,000 ⁸ 33,000	57,000 ^c 36,000 ^c	74,000	: 	1 1	B80 B100 B70 B100	Q
None req'd	SAE J429 Grade 4	Shuds	Medium carbon cold drawn steel	ON	2 - 12	65,000	100,000	115,000	į		C22 C32	G
\	SAE J429 Grade 5 GM 280-M	Bolls, screws, and studs	Medium carbon steel, quenched and tempered	Yes except studs	% - 1 Over 1 - 1%	85,000	92,000 ^C 81,000 ^C	120,000	i l	1 i	8/5 3/8	D Equivalent to ASTM A449
-	SAE J429 Grade 5 1 (E) GM 275-M	Sems Bolts and screws	Low or medium carbon sleel, quenched and tempered	Yes	#6 - % #6 - %	85.000	1	120,000	İ	l	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	D,F
\ -\ \	SAE J429 Grade 5.2	SAE J429 Bolts and screws Grade 5.2	Low carbon martensile steel, fully killed, fine grain, quenched and tempered	Yes	- -	85,000	92,000	120,000			3 3 3 3 3 3	¢.

Footnotes are grouped on the last page of this Part VII series.

I

								Mechanical properties	propertie	8		
				0,700	i i i i	Boll	Bolts, screws, studs	tuds	Nuts	Hard	Hardness	
Grade ID mark	Spec number	Fastener description	Material	s migrs ID symbol req'd?	size range (inch)	Proof load (psl)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnote(s)
-/<	SAE J429 Grade 7 GM 290:M	Bolls and screws	Medium carbon alloy steel, quenched and tempered	Yes	% - 1%	105,000	115,000 [©]	133,000	i	i	85 23 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	Roll threaded after heal freatment: D.F
<u>-</u> ;(-	SAE J429 Grade 8 GM 300-M	Bolls, screws, and studs	Medium carbon alloy steel, quenched and tempered	Yes except studs	24 - 12 24 - 12	120,000	130,000	150,000			3/g	D Equivalent to ASTM A354, Grade BD.
None req'd	SAE 1429 Grade 8 1	Studs	Elevated temperature drawn steel medium carbon alloy or SAE 1541- (or 1541H steel)	No	% - 1%	120,000	130,000	150,000	i	1	1	Q
1/1/	SAE J429 Grade 8 2	Bolts and screws	Low carbon martensite steel, fully killed, fine grain, quenched and tempered	Yes	7-1	120,000	130,000¢	150,000		i	Į.	<u> </u>
-	GM 455 M	Bolls and screws	Corrosion resistant steet	Yes	% - 1%	40,000		55,000	ı	143 mm	B79 mm	Q
4.6	SAE J1199 GM 500)M (4-6)	Bolts, screws, studs and U bolts ⁶ metric	Low or medium carbon steel	Yes	M5 - M36 mm	225 MPa	240 MPa ^C	240 MPa ^C - 400 MPa		, , , , , , , , , , , , , , , , , , ,	867 888 887 8100	G Approximately equivalent to SAE J429 Grade 1 and ASTM A307 Grade A
8.	SAE J1199 GM 500M (4.8)	Bolls, screws, sems and studs - metric	Low or medium carbon steal	Yes	M1.6 - M16 mm	310 MPa	340 MPa	420 MPa	!	i	82,1 8100	y
8.8	SAE J1199 GM 500M (5.8)	Both, screws, and studs metric	Cow or medium carbon Steel (cold worked)	, kes	M5 -	380 MPa	420 MPa	520 MPa			1882 1895 1872 18100	G Approximately equivalent to SAE J429 Grade 2

Footnotes are grouped on the last page of this Part VII series.

								Mechanical properties	propertie	ş		
				1		Boli	Bolts, screws, studs	studs	Nuts	Hard	Hardness	
Grade 1D mark	Spec	Fastener description	Material	s illigr s ID symbol req'd?	Nominal size range	Proof load	Yield strength (min)	Tensile strength (min)	Proof load	Brinell	Rockwell	Remarks or footnote(s)
80 80	SAE	Bolts, screws, and studs metric	Medium carbon or medium carbon alloy steel, quenched and tempered								83/E	٣
o (H)	GM	Studs—metric	Medium carbon or medium carbon alloy steel, quenched and tempered	Yes	M16 - M36 mm	600 MPa	660 ¹ MP _d	830 MPa		į	3/3	Approximately equivalent to SAE J429 Grade 5 and ASTM A449
8.8	(8 8)	Bolls, screws, and studsmefric	Low Carbon martensite steel, quenched and tempered									
8.8		Bolls, screws, sems and studsmetho	Medium carbon steet, quenched and tempered									
+ Î	SAE	Studs —metric	Medium carbon steel, quenched and tempered				i					
8.8	GM 500M	Bolls, screws, sems, and studs —metric	Low carbon martensite steel, quenched and tempered	, Yes	M1.6 - M16 mm	650 MPa		900 MPa	:	i	2/25 2/25	G Stronger than SAE J429 Carte 5 and ASTM
+ 1 €	6	Studsmetric	tow carbon martensite sleel, quenched and tempered				420 MPa					٠ ۲
<u>8 8</u>		Same as sems, but no washers - metric	Medium carbon steel, quenched and tempered									
12.9												
⊲ €	5AF J1199	Bolts, screws, and studs metric	Alloy steel, oil quenched and tempered	Yes	M36 run	970 MPa	970 MPa - 1100° MPa - 1220 MPa	1220 MPa	ı	;	<u> </u>	ၒ
				-	_							

						l			Mechanical properties	propertie	٠		
SME State Gaste Fastener Material Simple Si						•	Bolt	S, SCIBWS,	studs	Nuts	Hare	iness	
Figure 2 State Post source Post sour	srade ID mark	Spec number	Fastener description	Material	ls mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load	Yield strength (min)	Tensite strength (min)	Proof load (psi)	Brinell	Rockwell	Remarks or footnoteis
SAE Shuds	6.0		Bolls, screws, and studs —metric	Medium carbon alloy steel, quenched and tempered									
SME Stude - metric Low carbon Low carbon Low carbon Low carbon Low carbon Low carbon Low carbon Low carbon Low carbon Low carbon Low carbon Low or medium No 1/2 - 1/2	Πŝ	SAE J1199	Studs—metric	Medium carbon alloy steel, quenched and tempered	30 >	M6 - M36 mm	COM OCO	2000				ï	G Approximately equivalent
SAE J995 SAE J995 SAE J995 Grade 5 Grade 8 SAE J995 Ower 1- Grade 8 Nuts Low or medium No SAE J995 SAE J995 Nuts Low or medium No SAE J995 Ower 1- Carbon steel GAM 301M SAE J995 Nuts Low or medium No SAE J995 Ower 1- Carbon steel The 15 The 15 Ower 1- The 15 Th	∏l≘	GM 500M (10 9)	Studs—metric	Low carbon martensite steel, quenched and	0	M5 ·	930 MTa	940° MP8			!	<u> </u>	to SAE J429, Grade 8 and ASTM A354, Grade BD
SAE J995	ونا	ļ	Bolls, screws, and studs — metric	Low carbon martensite steel, quenched and tempered									
SAE J995 Grade 5 Grade 8 Grade 8 Grade 8 SAE J995 Grade 8 SAE J995 Grade 8 Nuts Low or medium No Over 3-1 12, -12 No No Over 3-1 12, -12 No Over 3-1 13, -12 No Over 3-1 14, -12 Sandler Harri 1. 1 and Langer Langer Singler Harri 1. 1 and Langer	·	SAE J995 Grade 2 GM 284M	Nuis	Low or medium carbon steel	No	% - 1%	İ	İ		90.00	· ·	C32 ma	× ×
SAE J995 Glade 5 Nuts Low or medium No 24-17 12-17 SAE J995 SAE J995 SAE J995 SAE J995 Grade 8 Nuts Low or medium No Over 3- 12-17 Nor 1- 13-17 Smaller Harti 1- 1-and Land Langer.						7 1	i	:		120,00			
SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 SAE J995 Jana Low or medium No Over J. 1 and Lam J. Jana Lamd Lamd Lamd Lamd Lamd Lamd Lamd Lamd Lamd Lamd Lamd Lamd		SAE J995 Grade 5		Low or medium	S Z	Over 1 - 15	1	i		109,00 105,00 94,000	 	С32 пна	×
SAE J995 SAE J995 Grade 8 Nuts Low or medium No Over 3, - 12, 13, - 13, -13, - Over 3, - 14, - Smaller Harti 1, - 1 and Land Land Land Land Land Land	7			carbon steel	<u> </u>	A - 5	1	1		120,00			L,M
SAE J995 SAE J995 Grade 8 Nuts Low or medium No Over 3, - 15 1 Grade 8 Nuts Low or medium No Over 1, - 2,		GM 286M			**	· · · · · · · · · · · · · · · · · · ·	1		•	109,000 115,000 104,000		C30 max	
SAE J995 Grade 8 Nuts Low or medium No Over 3, - 1 GM 301M Smaller Han 1, 1 and larger.						\$1 · \$1			·	105,000 94,000			
SAE J995 Grade 8 Nuts Low or medium No Over 1. GM 301M Smaller Harn 1. 1 and Larger.	F					\$ - ₹ 2.5	ì	1		150,000		<i>∄</i>	
GM 301M Carbon steel 1: Sinaller I han 1. 1 and larger.		SAE J995 Grade 8		Con or modium	<u> </u>	Over % -	l	1	i	150,000		3 8 5	
		M 301M		carbon steel	2	Over 1 -	: 1			150,000		g S	∑
						Smaller them. 1				150,000		15	!
						1 and larger.		·		150,000		i a\ē	

ORIGINAL PAGE IS OF POOR QUALITY

. 1

							~	Mechanical properties	propertie	es		
				,	No.	Bol	Bolts, screws, studs	tuds	Nuts	Hard	Hardness	
Grade 1D mark	Spec number	Fastener description	Material	ID ID symbol req'd?	size range (inch)	Proof load	Yield strength (min psi)	Tensile strength (psl)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnote(s)
	GM 510M (5)	Nuts -metric	Non heat treated carbon steel	οN	1.6 - 4 mm 5.6 mm 8-10 mm 12 - 16 mm 20 - 36 mm				520 580 590 610 630	878	B70 min C30 max B78 miry C30 max	Coarse thread Style 1 hex nuts.
					3-4 mm	!			006	B85	ВВ5 глиу С30 глах	×.
	GM 510M (9)	Nuts - metric	Non-heat treated carbon steel	S N	5-6 rom 8-10 rum 12-16 mm 20-36 mm	1111	!!!::		915 940 950 920		889 min C30 max	Coarse thread Style 2 hex muts.
	GM 510M (10)	Nutsmetric	Heat freated carbon steel	No	1 ຄຳ 10 ເກເຕ 12 16 ເກເຕ 20 36 ເກເຕ			;	1040 1050 1060		C26 mm C36 max	Coarse thread Style 1 hex nuts
None req'd	SAE J430 Grade 0						23,000	40,000 55,000			B65 max for sizes 'is" and less.	
	SAE J430 Grade 1	Solid nvets	Carbon steel	0 N	All sizes	i	28,000	52,000 62,000		į	B85 max for sizes '," and less.	
	SAE J430 Grade 2						29,000	55,000			Not	
	SAE J430 Grade 3					ļ	38,000	68,000 82,000			Not specified	
None req'd	SAE JB2 Grade 60M	Machine screws	Carbon steel	No	*; - †#			60,000 mo		i I	8100 B100	
None req'd	SAE J82 Grade 120M	Machine screws	Carbon steet, quenched and tempered	CN	*; · ; #	1	!	000'021		!	C25 C38	

A. Whethever the void shift appears. Utail is due in plied

E Swees and Jonalay products without Washets.

B. Ropamerment, ter prood hand testing apply only to stress referend products.

C. Value applies to that their feat specification

Outbrighted that is a resoluted head action shall be again market as recorded to addition that such as textorized shall be invaried with the manufactures is also additional syndroll factorized. For the development of the such as a such additional factorized softs. The control of the such as a such that a such a such that a such a such a such as a such

Ī

Enther faced products, the markings may remode of data the whole of head.

All shots of sizes Ms and targer short be mare it is also the property class. Markings shot be former to other ex-nerse and of the shot and hosy bectored or the ex-ber marker or and office and another, and of the co-ber marker or and office and office and office or and beam marker or eld florand shorts markings, morter or and all the not end. E. He is waith a fineful and her flampe products without as and net ordered subjects shall have core hardness and received the Bockwork of grand sortial e-bardness in discretization flow earth with 2/3.

M. This is the optional projectly class syndad for 1975 or this property class in sizes Michinisajn (N).

G. Shotted and cloud received streets of all sizes undefined is a resignal falls of a cree a smaller field in the first branch in the first branch and serves IV and traper should be required by the charter of the first branch and serves IV and street IV and traper should be required by the charter of the first branch and the first branch and the first branch and the first should be required by the first branch of the first of the first branch and in the contraction of the first branch and a first branch of the first b

For thirds in table same as sents now refersible at least real the additionality in soft of all the angle factor on the property of use training the $-\frac{1}{2}$

J. Values apply to liftle and MULL trackd series

Lift pouts of her juin treasy terripin teo solited heavy fine action between the terripine and heavy her must are trust required to be speake marked. K. Values apply to Utal 1. 14th and finer thread series

Microbia making format. Latins are day culting bounders but shall consist of holdies, of the Resigna conters, one with the earth correct for banke's and biomorphies also are covered on variety.

Grade and material markings—Part VIII

ISO markings

ISO (the International Organization for Standardization) is a federation of the national standards bodies of the countries of the world. Purpose of developing international standards is to form the basis of a one-world system of engineering practices. It is intended that international decisions being documented as ISO standards will become accepted into the national standards of ISO standards are available from American National Standards Institute (ANSI), 1430 Broadway, New York, NY 10018.

ISO Iden

Identification markings required by ISO standards for externally threaded fasteners

							Mec	Mechanical requirements	ements			
						Exterr	Externally threaded fasteners	fasteners	Rockw	Rockwell hardness	988	
roperty class	ISO	6		Is mfgr's ID	Nominat size	Proof load	Yield	Tensile		Core	٠	Remarks
mark	number	description	Material	symbol req'd?	range (mm)	stress	strength (min MPa)	strength (min MPa)	Surface (Max)	(Min)	(Max)	or footnotes
4 .	1SO 898/1	Bolts, screws and studs	Low or medium carbon steel	Yes	M5-M100	225	240	400	!	198	B95	B,C
4.8	ISO 898/1	Bolts, screws and studs	Low or medium carbon steet, fully or partially annealed	Yes	M1 6.M16	310	340	.120		B71	895	8.C
5.8	1SO 898/1	Bolts, screws and studs	Low or medium Carbon steel, Cold worked	Yes	M5 M24	380	420	520		B82	H95	B.C.D
8.8	15O 1898/1	Bolts, screws and studs	Medium carbon steel, quenched and tempered	Yes	M16-M72	600	099	830)	30N56	C23	C34	B.C
88	1SO 898/1	Bolls, screws and studs	Low carbon martensite steel, quenched and tempered	Yes	M16 M36	009	099	830	30N56	C23	C34	B,C
80.00	1SO 898/1	Bolts, screws (and studs M12 or larger)	Medium carbon steel, quenched and tempered	Yes	MI 6 MI6	650	720	006	30N58	C27 ,	C36	B,C

Footnotes are grouped on the last page of this Part VIII series.

							Mec	Mechanical requirements	ements			
			•			Exterr	Externally threaded fasteners	fasteners	Rockwe	Rockwell hardness	58	
Property	CSI			ts mfgr's 10	Nominal size	Proof toad	Pieid	Tensile		Core	e.	Remarks
Ciass ID mark	standard number ^A	Fastener description	Material	symbol req'd?	range (mm)	stress	strength (min MPa)	strength (min MPa)	Surface (Max)	(Min)	(Max)	or footnotes
+	ISO 898/1	Studs of class 9 8	Medium carbon steel, quenched and tempered	Yes	Less than M12	650	720	006	30N58	C27	C36	C,E
8.	ISO 898/1	Bolts, screws (and studs M12 or larger)	Low carbon martensite steel, quenched and tempered	Yes	M1 6.M16	650	720	006	30N58	C27	C3 6	B,C
+1	ISO 898/1	Studs of class 9 8	Low carbon martensite steel, quenched and tempered	Yes	Less than M12	650	720	006	30N58	C27	C3 6	C.E
10.9	OSI	Bolls, screws	Medium carbon steel, quenched and tempered	Yes	M5-M20	830	9:10	1040	30N59	C33	C39	B.C
	898/1	(and studs M12 or targer)	Medium carbon alloy steet, quenched and tempered	Yes	M5-M100	830	940	1040	30N59	C33	C39	B.C
0	1SO 898/1	Studs of class 10.9	Medium carbon or medium carbon alloy steel, quenched and tempered	Yes	Less than M12	830	940	1040	30N59	C33	C39	C.E
10.9	1SO 898/1	Bolts, screws (and studs M12 or larger)	t ow carbon martensite Steel, quenched and tempered	Yes	M5·M36	830	940	1040	30N59	C33	C39	B.C
미	ISO 898/1	Studs of class 10.9	Low carbon martensite steel, quenched and tempered	Yes	Less than M12	830	940	1040	30N59	C33	C39	C,E
12.9	1SO 898/1	Bolts, screws (and studs M12 or larger)	Alloy steel, quenched and tempered	Yes	M1 6 M100	970	1100	1220	30N63	C38	C44	B.C.F
٥	1SO 898/1	Studs of class 12.9	Alloy steet, quenched and tempered	Yes	Less than M12	970	1100	1220	30N63	C38	C44	C.F.
							Foot	notes are grou	ped on the	last page	of this P	Footnotes are grouped on the last page of this Part VIII series.

l

Remarks or footnotes Ξ Ξ Ī I I Rockwell hardness 888 C36 C30 C30 C30 C30 (Max) C36C36(Min.) B78 B70 C26 Mechanical requirements for nuts C26 **B**70 **B**83 C26 885 889 Identification markings required by ISO standards for internally threaded fasteners. Overtapped nuts Proof load stress (MPa) 080 980 465 920 Non overtapped nuts 1050 1040 1060 1150 1150 1160 1200 1200 520 580 590 610 630 630 900 915 940 950 920 380 500 920 M12-M16 M20-M36 M3-M4 M5, M6 M8, M10 M12-M16 M42-M100 M24-M36 M42-M100 Nominal size range (mm) M8, M10 M42-M100 M1.6-M4 M5-M10 M12-M16 M12-M16 M20-M36 M8, M10 M5-M36 M5-M36 M5, M6 M24-M36 M3-M4 M5, M6 M1.6-M4 M20 Is mfgr's ID symbol req'd? Yes Yes Yes å Yes Yes Alloy steel quenched and tempered Altoy steel quenched and tempered Carbon steel Carbon steel Carbon steel Carbon steel Material Dimensional style of nut Hex, Style 2 and hex flange Hex. Style 2 Hex, Style 1 Hex, Style 1 Hex, Style 2 Hex, Style 1 Hex, Style 1 Hex, Style 2 and hex flange Heavy hex Heavy hex Heavy hex Hex jam Hex jam Property class of nut^G 5 9 05 6 6 ೭ 180 Property class ID mark None red'd 9 2 6 7

ISO footnotes from preceding tables

A. Although ISO 898/1 presents 10 property classes. IFI has been unable to otentify any commercial or industrial need by North American industry for ISO property classes 36 5 6 and 6.8 boils, screws and studs.

B. Marking is required for hex boils and screws with nomiindianeters. 2—Schim whitee shape of Tastener allows marking to be accompaished; preferably on the head; alternativery on the side of head by indenting.

C. Marking is required for studs with nominal diameters equal to or greater than 5mm, preferably on the extreme end of the threaded borrion by indenting. For studs with interference fit, the marking shall be at the nut end.

D. Class 5.8 applies only to bolts and screws with lengths 150mm and shorter and to studs of all lengths.

E. This is the grade mark symbol for studs of this property class in sizes M5 to 10 but not including M12.

F. Caution is advised when considering use of Class 12.9 products. Capability of the fasterier manufacturer, as well as anticipated sevice environment, should be carefully considered. Class 12.9 products require rigid control of heat treating operations and careful monitoring of as quenched hadriess, surface discontinuities, coefficially in decarborization, and freedom from carborization addressed correspon cracking susceptibility also needs to be addressed.

G. All data was extracted from ASTM ASS3M and ISO BORD. All values for property of classes 04 05, 5, 9 10 and 12 non-overtapped ruits in stee M36 and smaller are in both occuments and are energial classes. Sizes M36 and smaller are in both occuments and are energial classes. Sizes and overtapped ruit values are unique to ASG3M.

H. Hex nuts of thread diameters > 5mm and property class 5 each to of higher than 8 and property class 0.5 shall be marked as holded by indefining on the side or bearing surface, or by embossing on the chamiter.

i. Alternative marking system according to ctock-face system is as follows:

Γ	1	
12	12	
10	10	
6	6	
Property class	either designation symbol	or code symbol (clock-face system)
		Alternative marking

ORIGINAL PAGE IS OF POOR QUALITY

Appendix B Bolt Ultimate Shear and Tensile Strengths

[From ref. 18]

TABLE 8.1.5(a). Ultimate Single Shear Strength of Threaded Steel Fasteners

MIL-HDBK-5E 1 June 1987

						Ulfi	तकार झाम्ब्रांट आर	Unimale single shear strength, 10s.				
Shear strength of fastener, ksi	of fastenci	r, ksi	35	38	75	16	95	801	125	132	156	180
Fastener diameter	iameter	Basic		•	_							
Ë	۽	area										
0.112	4 #	0.0098520	345	374	739	897	936	1 064	1 232	1 300	1537	1773
0,125	1/8	0.012272	430	466	920	1117	1 166	1 325	1 534	1 620	1914	2 209
0.138	\$#	0.014957	523	898	1 122	1 361	1 421	1615	1 870	1 974	2 333	2 692
0.156	5/32	0.019175	179	729	1 438	1 745	1 822	2 071	2 397	2 531	2 991	3 452
0.164	œ #	0.021124	739	803	1 584	1 922	2 007	2 281	2 640	2 788	3 295	3 802
881	3/16	0.027612	996	1 049	2 071	2 513	2 623	2 982	3 452	3 645	4 310	4 970
061.0	2 01 #	0.028353	992	1 077	2 1 26	2 580	2 694	3 062	3 544	3 743	4 420	\$ 100
0.116	11.0	0.036644	1 283	1 392	2 748	3 335	3 481	3 958	4 580	4 840	5 720	009 9
0.219	7/32	0.037582	1315	1 428	2 819	3 420	3 570	4 060	4 700	4 960	\$ 860	094.9
0.250	1/4	0.049087	1 718	1 865	3 682	4 4 7 0	4 660	5 300	6 140	6 480	1 660	8 840
			٠,			000 7	000	096.0	0 600	071.01	010 010	13.810
0.312	5/16	0.076699	2 684	516.7	06/ 6	086.0	10 490	010011	13.810	14 580	17 230	19 880
0.375	3/8	0.11043	2 260	\$ 710	11 270	13.680	14 280	16 240	18 790	19 840	23 450	27 060
0.500	1/2	0.19635	6 870	7 460	14 730	17 870	18 650	21 210	24 540	25 920	30 630	35 340
0.562	91/6	0.24850		9 440	18 640	22 610	23 610	26 840	31 060	32 800	38 770	44 700
0.625	8/5	0.30680	10 740	099 11	23 010	27 920	29 150	33 130	38 350	40 500	47 900	55 200
0.750	3/4	0.44179	15 460	16 790	33 130	40 200	42 000	47 700	55 200	58 300	006 89	79 500
0.875	2/8	0.60132		22 850	45 100	54 700	57 100	64 900	75 200	79 400	93 800	108 200
	_	0.78540		29 850	58 900	71 500	74 600	84 800			122 500	141 400
1.125	1-1/8	0.99402	34 790	37 770	74 600	90 200	94 400	107 400	124 300	131 200	155 100	178 900
1.250	1-1/4	1.2272	43 000	46 600	92 000	111 700	116 600	132 500	153 400	162 000	191 400	220 900
1.375	1.3/8	1.4849		56 400	111 400	135 100	141 100	160 400	185 600		231 600	267 300
1.500	1-1/2	1.767.1	008 19	901 29	132 500	008 091	167 900	190 800	220 900	233 300	275 700	318 100

aValues with the first digit <4 are shown to 4 significant figures, all other are shown to 3 significant figures.

bFractional equivalent or screw number.

MIL-HDBK-5E 1 June 1987

					(Himate t	Ultimate tensile strength, Ibs. • 6.0	e.b.c		
lensile strength	lensile strength of fastener, ksi		\$\$	62	62.5	125	140	091	180
Fastener	Fastener diameter	PintoN							
In.	р	ninor arca				MIL-S-7742			
0.112	4-40	0.0050896	280	316	318	636	713	814	916
0.138	6-32	0.0076821	423	476	480	096	1 075	1 229	1 383
0.164	8-32	0.012233	673	758	765	1 529	1713	1 957	2 202
0.190	10-32	0.018074	994	1,121	1 130	2 2 2 9	2 530	2 892	3 253
0.250	1/4-28	0.033394	1 837	2 070	2 087	4 170	4 680	5 340	0109
0.312	\$/16-24	0.053666	2 9 5 2	3 327	3 354	6 710	7 510	8 590	099 6
0.375	3/8-24	0.082397	4 530	\$ 110	\$ 150	10 300	11 540	13 180	
0.438	7/16-20	0.11115	9 110	9	6 950	13 890	15 560	17 780	20 010
0.500	1/2-20	0.15116	8 310	9 370	9 450	18 900	21 160	24 190	27 210
0.562	81-91/6	0.19190	10 550	006 11	066 11	23 990	26 870	30 700	
0.625	8/8-18	0.24349	13 390	15 100	15 220	30 440	34 090	38 960	43 800
0.750	3/4-16	0.35605	19 580	22 080	22 250	44 500	49 800	57 000	64 100
0.875	7/8-14	0.48695	26 780	30 190	30 430	006 09	68 200	77 900	87 700
1.000	1-12	0.63307	34 820	39 250	39 570	79 100	88 600	001	114 000
1.125	1-1/8-12	0.82162	45 200	20 900	51 400	102 700	115 000	131 500	147 900
1.250	1-1/4-12	1.0347	26 900	64 200	64 700	129 300	144 900	165 600	186 200
1.375	1-3/8-12	1.2724	70 000	78 900	79 500	159 000	178 100	203 600	229 000
1.500	1.12.12	1.5345	84 400	95 100	95 900	191 800	214 800	245 500	276 200

*Values shown above heavy line are for 2A threads; all other values are for 3A threads.

TABLE 8.1.5(b₁). Ultimate Tensile Strength of Threaded Steel Fasteners

bNuts designed to develop the ultimate tensite strength of the fastener are required to develop the tabulated tension loads.

eValues with the first digit <4 are shown to 4 significant figures; all others are shown to 3 significant figures. dFractional equivalent or number and threads per inch.

^{*}Area computed using nominal minor diameter as published in Table 2.2.1 of Handbook H-28.

ī

Ş 7 7.7.

				Ultimat	Ultimate tensile strength, lbs a.b.c	bs a.b.c	
ile strength of faster	ner, ksi	Tensile strength of fastener, ksi	160	180	220	260	300
Fastener	Fastener diameter						
In.	٥	Maxinum minor areae			MIL-S-8879		
0.112	4-40	0.0054367	698	676	1,196	1,414	1,631
38.	6-32	0.0081553	1,305	1,468	1,794	2,120	2,447
0.164	8.32	0.012848	2,055	2,313	2,827	3,340	3,854
0.190	10.32	0.018602	2,976	3,348	4,090	4,840	5,580
0.250	1/4-28	0.034241	5,480	6,160	7,530	8,900	10,270
0.312	5/16.24	0.054905	8,780	9,880	12,080	14,280	16,470
0.375	3/8-24	0.083879	13,420	15,100	18,450	21,810	25,160
0.438	7/16-20	0.11323	18,120	20,380	24,910	29,440	33,970
0.500	1/2-20	0.15358	24,570	27,640	33,790	39,930	46,100
0.562	9/16-18	0.19502	31,200	35,100	42,900	50,700	58,500
0.625	5/8-18	0.24700	39,520	44,500	54,300	64,200	74,100
0 750	3/4-16	0.36082	57,700	64,900	79,400	93,800	108,200
0.875	7/8.14	0.49327	78,900	88,800	108,500	128,300	148,000
1 000	1-12	0.64156	102,600	115,500	141,100	166,800	192,500
1.125	1-1/8-12	0.83129	133,000	149,600	182,900	216,100	249,400
1.250	1-1/4-12	1.0456	167,300	188,200	230,000	271,900	313,700
1 375	1-3/8-12	1.2844	205,500	231,200	282,600	333,900	385,300
1500	1.1/2.12	1 5477	247,600	278,600	340.500	402.400	464,300

"All values are for 3A threads.

bNus designed to develop the ultimate tensile strength of the fastener are required to develop the tabulated tension loads.

Values with the first digit < 4 are shown to 4 significant figures; all others are shown to 3 significant figures.

4Fractional equivalent or number and threads per inch.

Area computed using maximum minor diameter as published in Tables II and III of MIL-S-8879.

Ţ

Appendix C Blind Rivet Requirements

FED. SUP CLASS

	National Aeronautics and Space Administration	Report Docum	nentation Page 3. Recipient's Catalog No.				
1.	Report No. NASA RP-1228	2. Government Acces	ssion No.	3. Recipient's Catalo	g No.		
4.	Title and Subtitle	<u> </u>		5. Report Date			
	Fastener Design Manual			March 1990			
				6. Performing Organi	zation Code		
7.	Author(s)			8. Performing Organi	zation Report No.		
	Richard T. Barrett			E-4911			
				10. Work Unit No.	* /		
9.	Performing Organization Name and Address			1	V-		
	National Aeronautics and Space Admi Lewis Research Center	nistration		11. Contract or Grant	NO.		
	Cleveland, Ohio 44135-3191			13. Type of Report and	Period Covered		
12.	Sponsoring Agency Name and Address		·	Reference Publi	ication		
	National Aeronautics and Space Admin	nistration		14. Sponsoring Agency	Code		
	Washington, D.C. 20546-0001						
15.	Supplementary Notes	7 10.			·		
16	Abstract						
10.	This manual was written for design engineers to enable them to choose appropriate fasteners for their designs. Subject matter includes fastener material selection, platings, lubricants, corrosion, locking methods, washers, inserts, thread types and classes, fatigue loading, and fastener torque. A section on design criteria covers the derivation of torque formulas, loads on a fastener group, combining simultaneous shear and tension loads, pullout load for tapped holes, grip length, head styles, and fastener strengths. The second half of this manual presents general guidelines and selection criteria for rivets and lockbolts.						
17.	Key Words (Suggested by Author(s))		18. Distribution Statement				
	Fastener design; Washers; Inserts; Torque table; Rivets; Lockbolts		Unclassified – Unlimited Subject Category 37				
19.	Security Classif. (of this report)	20. Security Classif. (or	i i	21. No of pages	22. Price*		
	Unclassified	Uncla	ssified	100	A05		